scholarly journals Particle Removal in Ultrasonic Water Flow Cleaning Role of Cavitation Bubbles as Cleaning Agents

2021 ◽  
Vol 314 ◽  
pp. 218-221
Author(s):  
Keita Ando ◽  
Mao Sugawara ◽  
Riria Sakota

Visualization experiments are performed to examine the role of acoustic cavitation bubbles that appear in 0.43-MHz ultrasonic water flow spreading over glass surfaces in the context of physical cleaning. The cleaning performance is evaluated using glass samples on which small silica particles are spin-coated. The visualization suggests that acoustic cavitation bubbles play a major role in particle removal as in the case of conventional cleaning with ultrasonic cleaning baths.

2021 ◽  
Vol 314 ◽  
pp. 186-191
Author(s):  
Hidehisa Usui ◽  
Tomoatsu Ishibashi ◽  
Hisanori Matsuo ◽  
Katsuhide Watanabe ◽  
Keita Ando

Visualization experiments were performed to examine whether acoustic bubbles play a role in ultrasonic water flow cleaning, as in convention cleaning with ultrasonic baths. Schlieren visualization confirmed the standing-wave-like acoustic field in ultrasonic water flow that collides with a glass surface. Backlight visualization showed that cavitation bubbles appear in the water flow spreading over the glass surface. These bubbles are found to oscillate in volume and move inside film flow and thus expected to play a role as active cleaning agents.


2021 ◽  
Vol 314 ◽  
pp. 202-206
Author(s):  
Yu Katano ◽  
Keita Ando

Visualization experiments were performed to study the relation between free-surface motion and bubble translation in a 1-MHz ultrasonic cleaning bath. From the visualization with a video camera, the characteristic frequencies of the free-surface oscillation (under the acoustic radiation force) and the translational velocity of cavitation bubbles (trapped via the primary Bjerknes force) were extracted, showing that there is a strong correlation between the free-surface oscillation and bubble translation. From the context of megasonic cleaning, such free-surface oscillation is expected to contribute to uniform cleaning performance with cavitation bubbles.


2014 ◽  
Vol 100 (5) ◽  
pp. 823-833 ◽  
Author(s):  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Yacine Rezgui ◽  
Miloud Guemini

1985 ◽  
Vol 74 (1) ◽  
pp. 267-282
Author(s):  
L.V. Domnina ◽  
J.A. Rovensky ◽  
J.M. Vasiliev ◽  
I.M. Gelfand

The role of microtubules in the spreading of cells from the liver-derived IAR2 rat cell line was studied. Cells in the control medium seeded on a flat isotropic glass surface rapidly spread to form discoid shapes. Spreading in colcemid-containing medium was disorganized and delayed; partial reversal of spreading was observed. Nevertheless, even in the presence of colcemid the cells finally spread to discoid flattened shapes. IAR2 cells in medium without colcemid spread not to discoid but to elongated shapes under three different sets of conditions: (1) when the cells were forced to spread on narrow strips of adhesive glass surface between two non-adhesive lipid films; (2) when the cells spread on the poorly adhesive surface of poly(HEMA)-covered glass; (3) when the cells spread on the usual glass surfaces in medium containing cytochalasin D. Addition of colcemid to the media reversed the polarized spreading under the first two conditions; colcemid did not reverse the formation of the elongated cell shape acquired by the cells spreading in cytochalasin-containing medium. Effects of microtubule-destroying drugs on the spreading of epithelial and fibroblast cells are compared and discussed. It is suggested that microtubules are essential for the stabilization of the spread state of those attached cytoplasmic processes and lamellae that do not have numerous and stable-cell substratum contacts, e.g. the processes formed at the early stages of spreading or the elongated processes of polarized cells. Possibly, microtubules stabilize the non-contracted state of the actin cytoskeleton in these processes.


Physiology ◽  
1987 ◽  
Vol 2 (1) ◽  
pp. 22-26
Author(s):  
JA Schafer

Fluid absorption in the proximal tubule can be driven by a small osmotic difference between the luminal and interstitial fluids because this leaky epithelium has a high water permeability. The osmotic difference is produced by solute absorption, which tends to dilute the luminal fluid and concentrate the interstitial fluid. However, important questions remain unanswered regarding the pathway for water flow and the role of hemodynamic and humoral factors.


Sign in / Sign up

Export Citation Format

Share Document