Simulation and Optimization of Temperature Field of Tank Cover with Super Large Diameter during the Creep Aging Forming Process

2021 ◽  
Vol 315 ◽  
pp. 3-9
Author(s):  
Yuan Gao ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.

2011 ◽  
Vol 189-193 ◽  
pp. 2269-2273
Author(s):  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
He Geng Wei

In the thermal design of embedded multi-chip module (MCM), the placement of chips has a significant effect on temperature field distributing, thus influences the reliability of the embedded MCM. The thermal placement optimization of chips in embedded MCM was studied in this paper, the goal of this work is to decrease temperature and achieve uniform thermal field distribution within embedded MCM. By using ANSYS the finite element analysis model of embedded MCM was developed, the temperature field distributing was calculated. Based on genetic algorithms, chips placement optimization algorithm of embedded MCM was proposed and the optimization chips placement of embedded MCM was achieved by corresponding optimization program. To demonstrate the effectiveness of the obtained optimization chips placement, finite element analysis (FEA) was carried out to assess the thermal field distribution of the optimization chips placement in embedded MCM by using ANSYS. The result shows that without chips placement optimizing the maximum temperature and temperature difference in embedded MCM model are 87.963°C and 2.189°C respectively, by using chips placement optimization algorithm the maximum temperature drop than the original 0.583°C and the temperature difference is only 0.694°C . It turns out that the chip placement optimization approach proposed in this work can be effective in providing thermal optimal design of chip placement in embedded MCM.


2011 ◽  
Vol 197-198 ◽  
pp. 1389-1394
Author(s):  
Sun Yi Chen

When the operating process of delay coking is cyclically changing from 25°C to 500°C, it would usually induce the effect of heat treatment on the shell of coke drum. After a special model of the kinetic medium climbing along the inside-wall of the coke drum at a steady rate set up, the resulting two-dimensional kinetic temperature field of shell in radial and axial directions has been calculated and analyzed by FEM. The relation between the material physical property of the shell and its temperature has been considered. The results show that the radial temperature difference or the axial temperature difference caused by the cooling water is more than that caused by the hot oil. The maximum temperature difference between the inside-wall and the outside-wall is 40°C below the medium level, 30mm by the hot oil and 60 °C or 25 mm by the cooling water. The circumferential uneven temperature field, location and concave/convex or incline/bend of body have been surveyed and analyzed. The lat-circle deformation of transverse section has been discussed.


Author(s):  
Huaiyu Wen ◽  
Yi Han ◽  
Xiaobo Zhang ◽  
Feng Liu ◽  
Hongwang Zhang

Abstract As a key component of wind turbine, the surface strengthening treatment of wind turbine gear is crucial to enhance its performance and service life. In the process of tooth-by-tooth induction heating, clear temperature distribution and process evolution could realize the lean control of heating effect and quality. In this article, the tooth-by-tooth heating process under the v-shaped inductor was studied to analyze the temperature field morphology and its evolution process. The results show that in the tooth profile region, the boundary morphology of the temperature field near the central section of the heating region conforms to the Boltzmann function, while the far sections conform to the normal distribution. At the end of heating, from the surface to the depth of the heating layer and from the heating center to both sides, both the maximum temperature difference and the distribution temperature are reduced. Meanwhile, the maximum temperature point near the central section is offset during the evolution of the temperature field morphology. The change of physical properties of materials and induced eddy distribution caused by involute structure and the constant change of temperature gradient are the fundamental reasons for the appearance of nonuniform temperature field and temperature excursion. The spatiotemporal variation of the hottest point was found, and the temperature morphology and evolution were revealed, which would provide a theoretical basis for adjusting the temperature distribution of tooth profile according to the requirements of different heating layers.


2019 ◽  
Vol 16 (04) ◽  
pp. 1843003
Author(s):  
Xuerun Huang ◽  
Hui Huang ◽  
Hua Guo

Temperature has an important influence on the sapphire wafer quality sliced using fixed abrasive diamond wire saw. In this paper, temperature field distribution on the wafer outer surface during the slicing of sapphire ingot was computationally and experimentally studied by taking the effect of coolant into account. The simulation temperature field distribution without coolant is in good agreement with the experimental result, and the cutting depth increases, the maximum temperature located at the middle of slicing zone. Coolant had a significant influence on the wafer temperature field distribution and the movement of slicing wire in a narrow kerf affected the coolant supply, which caused a deviation in the temperature distribution obtained by numerical simulation result and experimental measurement.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.


AIP Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 075007 ◽  
Author(s):  
Ruixi Jia ◽  
Qingyu Xiong ◽  
Kai Wang ◽  
Lijie Wang ◽  
Guangyu Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document