SEASONAL OCCURRENCE OF THE PEA APHID, ACYRTHOSIPHON PISUM (HARRIS) (HOMOPTERA: APHIDIDAE), ON CULTIVARS OF FIELD PEAS IN MANITOBA AND ITS EFFECTS ON PEA GROWTH AND YIELD

1990 ◽  
Vol 122 (3) ◽  
pp. 503-513 ◽  
Author(s):  
J.J. Soroka ◽  
P.A. Mackay

AbstractPopulations of pea aphid, Acyrthosiphon pisum (Harris), were sampled through the summer of 1984 on five cultivars and in 1985 and 1986 on six cultivars of field peas, Pisum sativum L., grown in field plots in southern Manitoba. Patterns of pea aphid population growth were generally similar among cultivars in any one year. Aphid populations on all cultivars in all years remained relatively low until mid-July, then increased rapidly, peaked at about the beginning of August, and declined sharply to low levels in late August. At the time of peak aphid numbers, significant differences in aphid population densities were found among cultivars in 2 years; the lowest densities were found on the cultivars Century and Tipu, and the highest densities on Triumph or Trapper. Pea aphid feeding was not detrimental to any yield parameters except 1000 seed weight. In 1984 Triumph and Tara, and in 1985 Triumph had significantly decreased 1000 seed weights in plots in which aphid densities were not controlled. Differences in the abundance of the aphid among cultivars were not reflected in their yield responses. Over 3 years the regression line of aphid densities upon Century seed weight was significantly steeper than those of Trapper, Lenca, or Tara. Trapper was least affected by aphid feeding. Results indicated that the economic threshold of pea aphids on peas other than Century needs to be re-evaluated.

1986 ◽  
Vol 118 (6) ◽  
pp. 601-607 ◽  
Author(s):  
G.A. Maiteki ◽  
R.J. Lamb ◽  
S.T. Ali-Khan

AbstractPea aphids, Acyrthosiphon pisum (Harris), were sampled from 1980 to 1983 in field peas, Pisum sativum (L.), in Manitoba. Sweep and foliage samples were taken in commercial fields and plots. Aphids were found in late May or early June soon after the crop emerged, but populations were low throughout June. Populations increased in July, when the crop was flowering and producing pods, and peaked in the latter half of July or early August in 3 of the 4 years, when pods were maturing. Populations decreased rapidly after the peak, as the plants senesced. In 1980, a drought year, aphid densities were low and the populations peaked in the middle of August. From 1981 to 1983, densities exceeded the economic threshold in all commercial fields and all but one of the plots that were sampled.


Biologia ◽  
2009 ◽  
Vol 64 (2) ◽  
Author(s):  
Sylwia Goławska ◽  
Iwona Łukasik

AbstractThis research aims to examine the effect of phenolics on pea aphid (Acyrthosiphon pisum) (Homoptera: Aphididae) development and feeding behaviour, on leaves of selected low-saponin lines of Radius alfalfa (Medicago sativa). There was a slight, negative correlation (Spearman rank correlation r s = −0.80) between concentrations of saponins and phenols. Lines with higher concentrations of saponins had less phenolics. Levels of phenolics in low-saponin lines of alfalfa cv. Radius were related to their acceptance by the pea aphid. Our data revealed an inverse relationship between level of phenolics and the aphid abundance and its biology on studied alfalfa lines. Larval development of the pea aphid was longer, reproduction period was shorter, and the fecundity was lower on low-saponin lines with higher level of phenolics. There were observed some tendencies in the pea aphid feeding behaviour on these lines: prolonging the probing of the peripheral tissues (epidermis and mesophyll) and shortening the period of phloem sap ingestion. The better hosts for the pea aphid were low-saponin lines with low levels of phenolic compounds.


1981 ◽  
Vol 21 (112) ◽  
pp. 506 ◽  
Author(s):  
PM Ridland ◽  
GN Berg

Twenty-two lines of lucerne, six of annual Medicago spp., seven of Trifolium subterraneum, six of T. repens and six of several other Trifolium spp. were tested for seedling resistance to pea aphid, Acyrthosiphon pisum (Harris), in glasshouse tests at Burnley, Victoria. In general, lucerne cultivars selected for resistance to North American biotypes of the aphid were resistant to the Victorian aphid population. However, in our tests, two cultivars (Matador and Pioneer Brand 545) that were classed as susceptible to pea aphid in the USA. were as resistant as WL 31 8, a cultivar selected in the U.SA. for resistance to pea aphid. Medicago truncatula cvv. Borung and Cyprus were highly susceptible to pea aphid. They were more severely damaged than M. sativa cv. Hunter River, which was the most susceptible of the lucerne cultivars tested. M. rugosa cv. Paragosa had a high level of resistance while M. truncatula cvv. Hannaford and Jemalong, and M. littoralis cv. Harbinger were stunted but had only a low level of seedling mortality. Of the seven cultivars of T. subterraneum tested, only cv. Clare had a high level of aphid resistance, and all lines of T. repens were susceptible. The lines of T. fragiferum, T. incarnatum and T. pratense were more resistant than the susceptible check, T. subterraneum cv. Daliak, and should at least be tolerant in the field.


2005 ◽  
Vol 79 (3) ◽  
pp. 139-148 ◽  
Author(s):  
C. Girousse ◽  
R. Bournoville ◽  
I. Badenhausser

This study proposes a guide for the design of experiments to test alfalfa (Medicago sativa) for resistance to pea aphid infestation (Acyrthosiphon pisum). This test was conducted in controlled conditions on alfalfa seedlings. For the infestation, aphid population maintained on alfalfa was found to be more efficient than an aphid population reared on broad bean. When comparing alfalfa cultivars, a non-choice test gave the same results as a choice test, that was more difficult to perform. When infesting a unit of 54 seedlings at the cotyledon stage on the 1st and 5th day of the experiment, 360 mg compared with 180 mg and 540 mg aphids, led to the best compromise between levels of infestation and aphid stock culture availability. Infestation was stopped when more than 60% of susceptible cultivar seedlings were wilted or dead. Under these conditions, we calculated the number of replicates necessary to obtain a fixed level of difference. Six units per cultivar would distinguish between cultivars differing from 20% in their seedling mortality.


1990 ◽  
Vol 122 (6) ◽  
pp. 1201-1210 ◽  
Author(s):  
J.J. Soroka ◽  
P.A. Mackay

AbstractPea aphids, Acyrthosiphon pisum (Harris), were sampled weekly or biweekly over the summers of 1985 and 1986 in a total of 15 commercial plantings of Century, Trapper, or Triumph field peas across Manitoba. Pea aphid populations rose more quickly in fields of Trapper than in Century or Triumph fields. The owners of all Trapper fields sampled initiated aerial application of insecticide for pea aphid control; at the time of spraying in 1985, plants in Trapper fields had significantly greater numbers of aphids in sweep samples than such samples from Century or Triumph fields. In 1986, Triumph plants supported greater numbers of aphids than Century or Trapper plants. Triumph plants remained green longer than plants of the other cultivais; in 1985 pea aphid numbers on this cultivar were highest on the last date sampled.Yield components were measured in sprayed and unsprayed plots within the commercial fields. When data were averaged for each cultivar, there were no significant differences in yield per area or in 1000 seed weight between sprayed and unsprayed plots. Data indicated that existing economic thresholds are too low for Trapper peas. However, one of the fields of Trapper peas that we sampled had significantly reduced numbers of pods per plant, yield per square metre, and weight of 1000 seeds in the unsprayed plot; this field had the largest population of pea aphids of any field sampled, with aphid numbers peaking at 48.5 ± 9.2 (SE) per plant lip during pod formation and filling. Significant yield losses also occurred in unsprayed plots of a Triumph field, which had a peak aphid population of 4.8 ± 1.6 per plant stem at pod maturation.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1080
Author(s):  
Karim El Fakhouri ◽  
Abdelhadi Sabraoui ◽  
Zakaria Kehel ◽  
Mustapha El Bouhssini

Pea aphid (Acyrthosiphon pisum Harris) is the major insect pest of lentil in Morocco. We investigated pea aphid mean numbers and yield losses on three lentil varieties at one location during three successive cropping seasons during 2015–2018. The effects of several weather factors on pea aphid population dynamics were investigated. Population density increased in early spring followed by several peaks during March–April and then steeply declined during the late spring. Aphid populations peaked at different times during the three years of the study. In 2016, higher populations occurred during the second and third weeks of April for Abda and Zaria varieties with averages of 27 and 28 aphids/20 twigs, respectively. In 2017, higher populations occurred on the 12th and 13th standard meteorological weeks (SMWs) for Zaria with averages of 24.7 and 27.03 aphids/20 twigs, respectively. In 2018, the population peaked for all varieties at three different times, 11th, 13th, and 17th SMW, with the highest for Zaria being 26.00, 47.41, and 32.33 aphids/20 twigs. Pea aphid population dynamics changed with weather conditions. The number of aphids significantly and positively correlated with maximum temperature, but significantly negatively correlated with relative humidity and wind speed. The minimum temperature and rainfall had non-significant correlations. Pea aphid infestation resulted in losses of total seed weight for all lentil varieties, with the highest avoidable losses for Bakria being 12.51% followed by Zaria with 7.72% and Abda with 4.56%. These losses may justify the development of integrated management options for control of this pest.


Sign in / Sign up

Export Citation Format

Share Document