ATTACK BY BARK BEETLES (COLEOPTERA: SCOLYTIDAE) FOLLOWING SPACING OF MATURE LODGEPOLE PINE (PINACEAE) STANDS

1999 ◽  
Vol 131 (5) ◽  
pp. 671-685 ◽  
Author(s):  
L. Safranyik ◽  
T.L. Shore ◽  
D.A. Linton

AbstractVariation in bark beetle attack following spacing of mature lodgepole pine stands in the East Kootenays of British Columbia was analyzed in relation to stand location (site), spacing treatment, and harvesting injury. Observations were made on three sites, each having three treatments: 4 × 4 m spacing, 5 × 5 m spacing, and untreated control. There was no statistically significant difference in the numbers of attacked trees among sites or treatments. However, in the spaced plots 94.3% of the attacked trees sustained harvesting injury or were located adjacent to skid trails. Dendroctonus valens LeConte was the dominant species attacking trees on the two drier sites, and Dendroctonus murrayanae Hopkins was the dominant species on the third site. There was no statistically significant variation in the percentage of attacked stumps among sites or spacing treatments. On average, 80.7% of the stumps were attacked; attacked stumps had larger diameters than unattacked stumps. Thirteen species of bark beetles were found attacking stumps. Hylurgops porosus LeConte was the most numerous species at all three sites. Based on the fit of the Michaelis–Menten equations to species accumulation curves, an estimated 76–90% of the number of species attacking stumps at the three sites were observed in bark samples. Margalef’s index of diversity for the two drier sites (Cranbrook = 1.15, Parson = 1.13) was nearly identical and higher than at the moist site (Elkford = 0.89). Pairs of sites had five to six species in common, and the Sorensen coefficient of similarity ranged from 0.52 to 0.71, indicating moderate similarity in species composition. The abundance versus species rank relationship was fitted by three models: the MacArthur broken stick model, the geometric series, and the Zeta distribution. The latter gave good fit to data from two sites, but none of the fitted models gave satisfactory fit to data from the third site, mainly because of the high abundance of the second ranked species (Orthotomicus caelatus Eichhoff). Our results indicated that stand characteristics affected species assemblages and abundances of bark beetle species that attacked stumps. Management practices that minimize injury to trees during the spacing operations are emphasized to reduce attack by bark beetles.

2003 ◽  
Vol 38 (4) ◽  
pp. 602-611 ◽  
Author(s):  
Daniel R. Miller ◽  
John H. Borden

We conducted seven experiments in stands of mature lodgepole pine in southern British Columbia to elucidate the role of host volatiles in the semiochemical ecology of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), with particular reference to the behavioral responses of predators and competing species of bark beetles. Our results demonstrated that the attraction of Ips pini and the bark beetle predators Lasconotus complex LeConte (Colydiidae), Thanasimus undatulus (Say) (Cleridae) and a Corticeus sp. (Tenebrionidae) were increased by 3-carene. In contrast, attraction of the bark beetle Pityogenes knechteli Swaine (Scolytidae) to ipsdienol was interrupted by 3-carene and α-pinene. Attraction of L. complex to ipsdienol was increased by γ-terpinene, a compound attractive to the mountain pine beetle, Dendroctonus ponderosae Hopkins (Scolytidae). Terpinolene interrupted the attraction of I. pini to ipsdienol.


2010 ◽  
Vol 25 (4) ◽  
pp. 181-185 ◽  
Author(s):  
Donald M. Grosman ◽  
Christopher J. Fettig ◽  
Carl L. Jorgensen ◽  
A. Steven Munson

Abstract Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and environmentally safe alternatives have examined the effectiveness of injecting small quantities of systemic insecticides directly into trees. In this study, we evaluated trunk injections of experimental formulations of emamectin benzoate and fipronil for preventing tree mortality due to attack by western pine beetle (Dendroctonus brevicomis LeConte) on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in California, mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine (Pinus contorta Dougl. ex Loud.) in Idaho, and spruce beetle (D. rufipennis [Kirby]) on Engelmann spruce (Picea engelmannii Parry ex Engelm.) in Utah. Fipronil appeared ineffective for protecting P. ponderosa from mortality due to D. brevicomis over the 3 years in California because of insufficient mortality of untreated, baited control trees the first 2 years and high mortality of the fipronil-treated trees in the third year. Emamectin benzoate was effective in providing protection of P. ponderosa from D. brevicomis during the third year following a single application. To our knowledge, this is the first demonstration of the successful application of a systemic insecticide for protecting individual conifers from mortality due to bark beetle attack in the western United States. Estimates of efficacy could not be made during both field seasons in P. contorta because of insufficient mortality in control trees. Both emamectin benzoate and fipronil were ineffective for protecting P. engelmannii from D. rufipennis. Lower ambient and soil temperatures and soil moisture may have limited chemical movement and thus efficacy at the Idaho and Utah sites.


Author(s):  
Monica Turner ◽  
Jacob Griffin ◽  
Philip Townsend ◽  
Martin Simard ◽  
Brian Harvey ◽  
...  

Recent increases in insect and fire activity throughout the western US have presented forest managers with formidable challenges. The extent and severity of bark beetle (Curculionidae: Scolytinae) epidemics have reached unprecedented levels, and the number of large, severe fires continues to increase. These trends are expected to continue because climate change is implicated for both disturbances. Insects and fire have tremendous ecological and economic effects in western forests, yet surprisingly little is known about how fire hazard may change following bark beetle epidemics, and the efficacy of alternative forest management practices (e.g., removal of beetle-killed trees or remaining small trees) designed to reduce future fire hazard is largely unknown. We are employing a combination of field studies, remote sensing and simulation modeling to understand how bark beetle infestation affects fire hazard in two widespread but contrasting forest types, lodgepole pine (Pinus contorta) and Douglas-fir (Pseudotsuga menziesii). Lodgepole pine and Douglas-fir forests are key components of Rocky Mountain landscapes, and both are experiencing extensive and severe bark beetle outbreaks. Published research on beetle effects on fire in lodgepole pine forests is inconclusive, and almost no studies have examined Douglas-fir. We hypothesize that differences in fire regime, stand structure, regeneration potential and decomposition of woody fuels lead to important differences in fuel profiles, fire hazard and, in turn, the effectiveness of alternative mitigation strategies in lodgepole pine and Douglas-fir. We also anticipate that ecosystem responses, especially nitrogen cycling, to beetle attack will differ between these two forest types. Our studies are being conducted in Grand Teton and Yellowstone National Parks, and the Bridger-Teton and Shoshone National Forests within the Greater Yellowstone Ecosystem (GYE), where we build on >20 years of research and our recent studies of bark beetles and fire in lodgepole pine forests. During the summer of 2010, we conducted a significant portion of the field component of the project, measuring stand structure and fuel profiles in a chronosequence of Douglas-fir forests of differing time since beetle attack (TSB), and also measuring burn severity and forest regeneration following a 2008 fire that burned a recently beetle-attacked forest. Data analyses are ongoing and results will be forthcoming.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Katrina L. Canon ◽  
Plutomeo M. Nieves ◽  
Antonino B. Mendoza Jr. ◽  
John Christopher C. Nolial ◽  
Niño C. Celestial ◽  
...  

Anguillids are а valuable fish commodity worldwide. Although Anguilla luzonensis have been abundantly found in the northern Philippines and collected for trade, no available records show that it recruited in the mid-part where Lagonoy Gulf, Bicol is situated. In this study, we investigated the occurrence of A. luzonensis in the tributaries along the Lagonoy Gulf, Philippines using molecular tools. Glass eel specimens were collected in 2018–2019 from the Comun river, Albay; the Lagonoy river, Camarines Sur; and the Bato river, Catanduanes. For the first time, A. luzonensis was identified by molecular analysis in the Lagonoy Gulf. A. luzonensis was the second most abundant species in the Comun and Lagonoy rivers (9.5 and 22.4 %, respectively). Anguilla luzonensis collected from the Comun and Lagonoy rivers did not show a significant difference (FST= 0.00825, p>0.05). Anguilla marmorata was the most dominant species in all tributaries (71.1–98.0 %). In the Comun and Lagonoy rivers, A. bicolor pacifica was the third most abundant species (7.7 and 6.5%, respectively). In addition, Anguilla celebesensis was only found rarely in the Comun river (0.9 %). This study provides important information for sustainable resource management and effective utilization of the eel species in these regions. 


2012 ◽  
Vol 7 (5) ◽  
pp. 910-916 ◽  
Author(s):  
Dariusz Gwiazdowicz ◽  
Jacek Kamczyc ◽  
Ewa Teodorowicz ◽  
Jerzy Błoszyk

AbstractPrevious studies have suggested that forest management practices can influence bark beetle populations as well as those of some associated insects. However, the impact on bark beetle-associated mites, which occur in bark beetle galleries in large numbers, have not yet been studied. The objective of this study was to compare mesostigmatid mite communities associated with the Norway spruce pest Ips typographus in managed and natural forest stands separated by spruce-free belt. The study sites were located in Białowieża National Park (NE Poland) as well as in the Izery Mountains (Szklarska Poręba Forest District — SW Poland), which were destroyed in 1981–1987 by an ecological disaster. In total, 30 Borregard pipe traps containing the commercial attractant Ipsodor W (Chemipan, Poland) were set up at each study site and collected in August 2010. In total, 7214 bark beetles and 1804 mites were collected which were classified into 16 species. We observed differences in the total abundance of mites as well as the total number of recorded mite species. The communities were quite similar, and were generally dominated by populations of Trichouropoda polytricha, Dendrolaelaps quadrisetus and Uroobovella ipidis. The Shannon and Evenness indexes as well as the mean number of mites per sample were not significantly different between forests.


Author(s):  
Monica Turner ◽  
William Romme ◽  
Brian Harvey ◽  
Daniel Donato

Recent increases in insect and fire activity throughout the western US have presented forest managers with formidable challenges. The extent and severity of bark beetle (Curculionidae: Scolytinae) epidemics have reached unprecedented levels, and the frequency of large, severe fires continues to increase. These trends are expected to continue because climate change is implicated for both disturbances. Insects and fire have tremendous ecological and economic effects in western forests, yet surprisingly little is known about how fire hazard may change following bark beetle epidemics, and how changing fire regimes may potentially alter forests of Greater Yellowstone. We are employing a combination of field studies, remote sensing and simulation modeling to understand how bark beetle infestation affects fire hazard in Douglas-fir (Pseudotsuga menziesii) forests. The Douglas-fir type is a key component of Rocky Mountain landscapes, and is experiencing extensive and severe bark beetle outbreaks. However, almost no studies have examined Douglas-fir. We hypothesized that differences in fire regime, stand structure, regeneration potential and decomposition of woody fuels lead to important differences in fuel profiles, fire hazard and, in turn, the effectiveness of alternative mitigation strategies in Douglas-fir. Our studies are being conducted in Grand Teton and Yellowstone National Parks, and the Bridger-Teton and Shoshone National Forests within the Greater Yellowstone Ecosystem (GYE), where we build on >20 years of research and our recent studies of bark beetles and fire in lodgepole pine forests. During the summer of 2011, we conducted a significant portion of the field component of the project, collecting ancillary data in our previously measured chronosequence of Douglas-fir forests of differing time since beetle attack (TSB), and measuring burn severity and forest regeneration following a 2008 fire that burned a recently beetle-attacked Douglas-fir forest on the Shoshone National Forest. We also sampled forest regeneration and dead wood biomass following a short (28-year) interval ‘reburn’ in lodgepole pine forests to test whether reduced seed sources associated with younger trees at the time of burning might reduce postfire regeneration potential. Data analyses are ongoing and results will be forthcoming.


2001 ◽  
Vol 31 (9) ◽  
pp. 1502-1512 ◽  
Author(s):  
Trevor D Hindmarch ◽  
Mary L Reid

Thinning of forests has been used as a management tool for bark beetles; however, its effects have only been studied in a limited number of bark beetle species, and the causes of its effectiveness remain unclear. We sampled the abundance and diversity of secondary bark beetles in mature thinned and unthinned lodgepole pine, Pinus contorta Dougl. ex Loud., stands (ca. 840 and 2500 trees/ha, respectively) near Whitecourt, Alberta. We examined the factors that might influence any differences in abundance and diversity between thinned and unthinned stands. Breeding habitat for secondary bark beetles (fresh coarse woody debris) was much more abundant in thinned stands than in unthinned stands in the first year after thinning but then returned to background levels. Temperature and wind speeds were higher in thinned stands in all 3 years after thinning. The abundance of striped ambrosia beetles, Trypodendron lineatum Olivier, and pine engravers, Ips pini (Say), captured in baited funnel traps and window traps remained significantly higher in thinned stands than in unthinned stands in all 3 years after thinning, while the diversity of bark beetles remained constant or increased over this period. Our data suggest that the persistent changes in microclimate following thinning, especially increased wind, were partly responsible for thinned stands having more secondary bark beetles than unthinned stands.


2021 ◽  
Vol 4 ◽  
Author(s):  
Mario Bretfeld ◽  
Heather N. Speckman ◽  
Daniel P. Beverly ◽  
Brent E. Ewers

Bark beetles naturally inhabit forests and can cause large-scale tree mortality when they reach epidemic population numbers. A recent epidemic (1990s–2010s), primarily driven by mountain pine beetles (Dendroctonus ponderosae), was a leading mortality agent in western United States forests. Predictive models of beetle populations and their impact on forests largely depend on host related parameters, such as stand age, basal area, and density. We hypothesized that bark beetle attack patterns are also dependent on inferred beetle population densities: large epidemic populations of beetles will preferentially attack large-diameter trees, and successfully kill them with overwhelming numbers. Conversely, small endemic beetle populations will opportunistically attack stressed and small trees. We tested this hypothesis using 12 years of repeated field observations of three dominant forest species (lodgepole pine Pinus contorta, Engelmann spruce Picea engelmannii, and subalpine fir Abies lasiocarpa) in subalpine forests of southeastern Wyoming paired with a Bayesian modeling approach. The models provide probabilistic predictions of beetle attack patterns that are free of assumptions required by frequentist models that are often violated in these data sets. Furthermore, we assessed seedling/sapling regeneration in response to overstory mortality and hypothesized that higher seedling/sapling establishment occurs in areas with highest overstory mortality because resources are freed from competing trees. Our results indicate that large-diameter trees were more likely to be attacked and killed by bark beetles than small-diameter trees during epidemic years for all species, but there was no shift toward preferentially attacking small-diameter trees in post-epidemic years. However, probabilities of bark beetle attack and mortality increased for small diameter lodgepole pine and Engelmann spruce trees in post-epidemic years compared to epidemic years. We also show an increase in overall understory growth (graminoids, forbs, and shrubs) and seedling/sapling establishment in response to beetle-caused overstory mortality, especially in lodgepole pine dominated stands. Our observations provide evidence of the trajectories of attack and mortality as well as early forest regrowth of three common tree species during the transition from epidemic to post-epidemic stages of bark beetle populations in the field.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
SAMBORLANG K. WANNIANG ◽  
A. K. SINGH

A field experiment was conducted during kharif 2011 on experimental farm of the College of Post Graduate Studies (CAU–Imphal), Umiam (Meghalaya) to evaluate the effect of integration of green manuring, FYM and fertilizers as integrated nutrient management (INM) practices on growth and developmental behaviour of quality protein maize cultivar QPM 1. The data revealed that comparatively higher amount of primary nutrients were added in green manured maize plots in comparison to non green manured treatments. Green manuring also left a positive response on plant height, CGR, RGR leaf area, and dry matter accumulation in plants though the difference between green manured and non-green manured treatments was at par. Treatments 75 % RDF + 5 t FYM ha-1, 50 % RDF + 7.5 t FYM ha-1, 100 % RDF ha-1 and 75 % RDF + 2.5 t FYM ha-1 recorded significantly higher values of all the above said growth parameters over 50 % RDF + 5 t FYM ha-1 and control treatments. At all stages of observations, the maximum dry matter was associated with RDF (recommended doses of fertilizers) which was at par with 75 % RDF + 5 t FYM ha-1, but significantly higher over the plant dry weight recorded from all remaining treatments. A Significant difference in CGR at 30 – 60 and 60 – 90 DAS stage and in RGR at 90 DAS - harvest stage was observed due to various combinations of recommended dose of fertilizer with different doses of FYM. Number of days taken to attain the stages of 50% tasselling, silking and maturity did not differ significantly due to green manuring. However, treatment 75 % RDF + 5 t FYM ha-1 took significantly lesser number of days for these stages than other treatment combinations. The superiority of the treatment 75 % RDF + 5 t FYM ha-1 indicated a possibility of substituting 25% of RDF with 5 t FYM ha-1 without any loss in dry matter accumulation in plants of the quality protein hybrid maize in mid-hill ecosystems of Meghalaya.


Author(s):  
Eva C. Böckmann ◽  
E. S. Debus ◽  
R. T. Grundmann

Abstract Purpose The publication activity of 38 German general/visceral surgery university departments, documented by first or last authorship from staff surgeons (chief and consultants), was evaluated. Methods The observation period extended from 2007 to 2017 and all PubMed-listed publications were considered. Impact factor (IF) was evaluated through the publishing journal’s 5-year IF in 2016, as was the IF for each individual publication. Ranking was expressed in quartiles. Results The staff surgeons of the 38 departments comprised 442 surgeons, of which only 351 (79.4%) were active as first or last authors. Four thousand six hundred and ninety-nine publications published in 702 journals were recorded. The four leading departments in publication number published as much as the last 20 departments (1330 vs. 1336 publications, respectively). The mean of the first (most active) department quartile was 19.6 publications, the second 15.4, the third 11.0, and the last quartile 7.6 per publishing surgeon. The total cumulative impact factor was 14,130. When examining the mean number of publications per publishing surgeons per the 10 year period, the mean of the first quartile was 57.9 cumulative IF, the second 45.0, the third 29.5, and the fourth quartile 17.1. With 352 (7.5%) publications, the most frequently used journal was Chirurg, followed by Langenbeck’s Archives of Surgery with 274 (5.8%) publications. Pancreas-related topics led in terms of publication number and IF generated per individual publication. Conclusion A significant difference in publication performance of individual departments was apparent that cannot be explained by staff number. This indicates that there are as yet unknown factors responsible for minor publication activity in many university departments.


Sign in / Sign up

Export Citation Format

Share Document