Gall-maker Paradiplosis tumifex (Diptera: Cecidomyiidae) and its inquiline Dasineura balsamicola (Diptera: Cecidomyiidae): an update on epidemic episodes and seasonal ecology in Québec, Canada

2016 ◽  
Vol 148 (4) ◽  
pp. 452-465 ◽  
Author(s):  
Jean-Frédéric Guay ◽  
Diane Bulot ◽  
Jean-Michel Béland ◽  
Conrad Cloutier

AbstractThe balsam gall midge Paradiplosis tumifex Gagné (Diptera: Cecidomyiidae) is a major pest for the Christmas tree industry. This galler is frequently associated with the inquiline Dasineura balsamicola (Lintner) (Diptera: Cecidomyiidae), which is involved in the dynamics of the galler. Despite their importance, seasonal ecology of both midges under the climatic conditions prevailing in eastern Canada is still poorly understood. More importantly, nothing has yet been done to fully assess the impact of temperature on these insects, at key events such as adult emergence and larval overwintering. Here we followed P. tumifex and D. balsamicola spring phenology in the field, as well as their survival during winter diapause under simulated climatic scenarios in the laboratory. We observed spring asynchrony between fir host trees and P. tumifex in the first year of study, but under prevailing epidemic conditions, we observed no impact on summer abundance. We clarified available knowledge on their ecology, showing that overwintering habitats and strategies differ between the galler and its inquiline, which should alter pest control strategies. Experimental overwintering data suggest that diapausing conditions affect these species differentially and could potentially impact the spring sex ratio of their midges, which tends to be strongly female biased.


2016 ◽  
Author(s):  
Gautier Davesne ◽  
Daniel Fortier ◽  
Florent Dominé ◽  
James T. Gray

Abstract. We present data from Mont Jacques-Cartier, the highest summit in the Appalachians of south-eastern Canada, to demonstrate that the occurrence of contemporary permafrost body is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study was (i) to understand the snow distribution pattern and snow thermo-physical properties on the Mont Jacques-Cartier summit; and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by snow cover typically less than 30 cm thick due to the physiography and surficial geomorphology of the site and the strong westerly winds. The mean annual ground surface temperature (MAGST) below this thin and wind-packed snow cover was about −1 °C in 2013 and 2014, for the higher exposed sector of the summit characterised by a block-field or sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz), and for the steep leeward slope to the SE of the summit the MAGST was around 3 °C in 2013 and 2014.



2017 ◽  
Vol 11 (3) ◽  
pp. 1351-1370 ◽  
Author(s):  
Gautier Davesne ◽  
Daniel Fortier ◽  
Florent Domine ◽  
James T. Gray

Abstract. We present data on the distribution and thermophysical properties of snow collected sporadically over 4 decades along with recent data of ground surface temperature from Mont Jacques-Cartier (1268 m a.s.l.), the highest summit in the Appalachians of south-eastern Canada. We demonstrate that the occurrence of contemporary permafrost is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study were (i) to understand the snow distribution pattern and snow thermophysical properties on the Mont Jacques-Cartier summit and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting with the local surface roughness created by the physiography and surficial geomorphology of the site. The snowpack structure is fairly similar to that observed on windy Arctic tundra with a top dense wind slab (300 to 450 kg m−3) of high thermal conductivity, which facilitates heat transfer between the ground surface and the atmosphere. The mean annual ground surface temperature (MAGST) below this thin and wind-packed snow cover was about −1 °C in 2013 and 2014, for the higher, exposed, blockfield-covered sector of the summit characterized by a sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz), and for the steep leeward slope to the south-east of the summit, the MAGST was around 3 °C in 2013 and 2014. The study concludes that the permafrost on Mont Jacques-Cartier, most widely in the Chic-Choc Mountains and by extension in the southern highest summits of the Appalachians, is therefore likely limited to the barren wind-exposed surface of the summit where the low air temperature, the thin snowpack and the wind action bring local cold surface conditions favourable to permafrost development.



2003 ◽  
Vol 63 (1) ◽  
pp. 83-86 ◽  
Author(s):  
G. Moretto ◽  
J. de M. Leonidas

Whereas in several parts of the world varroa is the major pest affecting apiculture, in others the parasite is unknown to many beekeepers because its damage to bees is minor. The impact of the mite Varroa destructor is related to the climatic conditions and the races of Apis mellifera bees in each region where the pest exists. In the present study, the current level of infestation by the mite was assessed to determine the evolution of the pest in Africanized bee colonies in Southern Brazil. This level of infestation was considered low: approximately two mites per one hundred adult bees. This result is similar to that obtained for the same apiary almost five years ago and for others distributed in various regions of Brazil. In the present study, we also estimated the total varroa population and its distribution among brood and adults in each bee colony.



Purpose. To assess the impact of climate change on oat productivity in the steppe zone of Ukraine. Methods. Statistical, mathematical modeling. Results. It is established that the seed sowing and of seedling emergence will be postponed to an earlier date. More favorable conditions are expected for the formation of seedling emergence, growth and development of plants during the period of "seedling - heading". Reduced background temperature will lead to a decrease in the value of total evaporation and a decrease in moisture demand by 47–58 mm. The moisture content of the first vegetation period will be significantly higher than in the middle perennial years. Agroclimatic conditions of the second half of the vegetation period of oats will develop at low temperatures and uneven moisture across the territory. The demand for moisture will increase everywhere by 12–28 mm. The supply of moisture will decrease. Using the model of the formation of the yield of agricultural crops, the influence of changes in the agro-climatic conditions of the growing season on the indicators of photosynthetic productivity of oat crops and the formation of the yield was assessed. Conclusions. It was concluded that a possible increase in the yield of oats in the Steppe zone of Ukraine under the implementation of climatic scenarios and early sowing terms. Changes in agroclimatic conditions in the implementation of climatic scenarios will lead to changes in the photosynthetic activity of oat crops: the relative leaf area will increase, the increase in total plant mass will increase, the photosynthetic potential of crops will grow during the growing season. Proposed cartographic schemes of the expected yield of oats in the Steppe zone of Ukraine.



Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 855
Author(s):  
Kévin Tougeron ◽  
Louise Ferrais ◽  
Marie-Eve Renard ◽  
Thierry Hance

Testing fluctuating rather than constant temperatures is likely to produce more realistic datasets, as they are ecologically more similar to what arthropods experience in nature. In this study, we evaluated the impact of three constant thermal regimes (7, 12, and 17 °C) and one fluctuating thermal regime (7–17 °C with a mean of 12 °C) on fitness indicators in the rosy apple aphid Dysaphis plantaginea, a major pest of apple orchards, and the parasitoid Aphidius matricariae, one of its natural enemies used in mass release biological control strategies. For some—but not all—traits, the fluctuating 7–17 °C regime was beneficial to insects compared to the constant 12 °C regime. Both aphid and parasitoid development times were shortened under the fluctuating regime, and there was a clear trend towards an increased longevity under the fluctuating regime. The fecundity, mass, and size were affected by the mean temperature, but only the mass of aphids was higher at 7–17 °C than at a constant 12 °C. Parasitism rates, but not emergence rates, were higher under the fluctuating regime than under the constant 12 °C regime. Results are discussed within the framework of insect thermal ecology and Jensen’s inequality. We conclude that incorporating thermal fluctuations in ecological studies could allow for the more accurate consideration of how temperature affects host–parasitoid interactions and insect responses to temperature change over time.



2014 ◽  
Author(s):  
Christine Ringler ◽  
Andrea Morales ◽  
Steven Nowlis


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.



Author(s):  
S.E. Rudov ◽  
◽  
V.Ya. Shapiro ◽  
O.I. Grigoreva ◽  
I.V. Grigorev ◽  
...  

In the Russian Federation logging operations are traditionally carried out in winter. This is due to the predominance of areas with swamped and water-logged (class III and IV) soils in the forest fund, where work of forestry equipment is difficult, and sometimes impossible in the warm season. The work of logging companies in the forests of the cryolithozone, characterized by a sharply continental climate, with severe frosts in winter, is hampered by the fact that forest machines are not recommended to operate at temperatures below –40 °C due to the high probability of breaking of metal structures and hydraulic system. At the same time, in the warm season, most of the cutting areas on cryosolic soils become difficult to pass for heavy forest machines. It turns out that the convenient period for logging in the forests of the cryolithozone is quite small. This results in the need of work in the so-called off-season period, when the air temperature becomes positive, and the thawing processes of the soil top layer begin. The same applies to the logging companies not operating in the conditions of cryosolic soils, for instance, in the Leningrad, Novgorod, Pskov, Vologda regions, etc. The observed climate warming has led to a significant reduction in the sustained period of winter logging. Frequent temperature transitions around 0 °C in winter, autumn and spring necessitate to work during the off-season too, while cutting areas thaw. In bad seasonal and climatic conditions, which primarily include off-season periods in general and permafrost in particular, it is very difficult to take into account in mathematical models features of soil freezing and thawing and their effect on the destruction nature. The article shows that the development of long-term predictive models of indicators of cyclic interaction between the skidding system and forest soil in adverse climatic conditions of off-season logging operations in order to improve their reliability requires rapid adjustment of the calculated parameters based on the actual experimental data at a given step of the cycles.



Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).



Sign in / Sign up

Export Citation Format

Share Document