SS Marine Renewable Energy – Ocean Current Turbine Mooring Considerations

Author(s):  
J.H. VanZwieten ◽  
W.E. Baxley ◽  
G.M. Alsenas ◽  
I. Meyer ◽  
M. Muglia ◽  
...  
2017 ◽  
Vol 8 (1) ◽  
pp. 4-9 ◽  
Author(s):  
Prasad Dudhgaonkar ◽  
Nagasamy Duraisamy ◽  
Purnima Jalihal

Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.


2017 ◽  
Vol 8 (1) ◽  
pp. 50-67 ◽  
Author(s):  
Richard Manasseh ◽  
Kathleen L McInnes ◽  
Mark A Hemer

The history of ocean renewable energy developments in Australia is reviewed. A layperson’s description of the physical operating principle is given for the main classes of technology that have been tested in Australian waters. The Australian marine domain possesses among the world’s most energetic wave-energy resources, driven by powerful mid-latitude westerly winds. The northern coast of Western Australia has tidal ranges significant on a global scale, and some geographical features around the continent have local tidal resonances. The East Australian Current, one of the world’s major western boundary currents, runs along the eastern Australian seaboard, offering potential for ocean-current energy. Sea-water temperatures in the tropical north-east of Australia may permit ocean thermal energy conversion. While this abundance of resources makes Australia an ideal location for technology development, the population is highly concentrated in a few large cities, and transmission infrastructure has developed over a century to supply cities from traditional power plants. Several wave-power developments have resulted in demonstration of deployments in Australian waters, three of which have been grid connected. Trials of tidal devices have also occurred, while other classes of ocean renewable energy have not yet been trialled. The prospects for marine renewable energy in Australia are discussed including non-traditional applications such as coastal protection and energy export.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


2021 ◽  
Author(s):  
Hassan Mahfuz ◽  
Nicholas Asseff ◽  
Mohammad Wasim Akram ◽  
Fang Zhou ◽  
Takuya Suzuki ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


Marine Policy ◽  
2009 ◽  
Vol 33 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Mark A. Shields ◽  
Lora Jane Dillon ◽  
David K. Woolf ◽  
Alex T. Ford

Sign in / Sign up

Export Citation Format

Share Document