Extreme Coastal Inundation Under Different Climate Scenarios: Fourchon Junction Case Study

2021 ◽  
Author(s):  
Octavio Sequeiros ◽  
Sergio Jaramillo

Abstract Port Fourchon Junction is located within Chevron's Fourchon Terminal, just south of Port Fourchon and is operated by Shell Pipeline Company LP. This manifold metering station is a critical junction for the Mars Corridor oil, as oil production from Mars (MC-807), Ursa (MC-809), Titan (MC-941), Who Dat (MC-547), Medusa (MC-582), and Olympus (MC-807B) flows through this station via a 24" pipeline. Port Fourchon is at the edge of the Mississippi delta facing the sea, one of the world's most vulnerable low-elevation coastal zones. It is highly exposed to storm surge and wave-induced inundation under hurricanes which regularly visit the Gulf of Mexico. In addition, it experiences one of the largest rates of subsidence in the world, which combined with sea level rise, will increase the site vulnerability in the coming decades. This study assesses present and future scenarios of subsidence and sea level rise under extreme metocean conditions induced by hurricanes and their impact on Port Fourchon Junction. Local effects such as the differential settlement of the barrier beach have been also considered. Using results from the numerical model XBeach, a set of different present and future scenarios are modelled under extreme metocean conditions. These conditions and the subsequent design parameters calculated, are not obtained through traditional extreme value analysis methods, instead, they are estimated through the influence of boundary conditions forced with the corresponding return period values of the parameters. Boundary conditions for the simulations are extracted from Grand Isle and Port Fourchon sea level observations, and from FEMA and the Water Institute of the Gulf simulations. Port Fourchon site should be subject to flooding for 10-year return period conditions based on Grand Isle observations. For 5-6 years return period conditions some degree of milder partial flood should also be expected. This is well captured by the model. While the highest inundating level is mostly dependent on winds, waves and surge acting together, surge is the single most critical parameter that defines the asset's base inundation level. Design future conditions based on surge extreme from FEMA simulations are recommended over surge extremes derived from Grand Isle observations. The barrier beach and the breakwaters play a key factor in sheltering site from waves and surge. Even when submerged under extreme high return period conditions they dissipate the waves ensuring that the maximum water level (wave crest elevation) on site is lower than would otherwise be without them. It is then important to maintain them fit for purpose during the entire lifespan of the asset. Both Grand Isle and Port Fourchon subsidence scenarios yield similar results. Based on the importance of Port Fourchon Junction facilities, the design criteria obtained, and the higher subsidence level observed at Port Fourchon (compared to Grand Isle), it is recommended that a 1000-year return period and future scenario based on FEMA surge level and Port Fourchon Relative Sea Level Rise (RSLR) is adopted for design. The subsidence associated to this scenario is 9.8 mm/year. The sea level rise associated to this scenario is 2 mm/year.

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


2019 ◽  
Author(s):  
Amir Hossein Mahdavi ◽  
Hamid Ansari Sharghi

Storm surge is generated by the integration of waves, tide and wind setup that is resulted in unwanted mean sea level rise and coastal flooding. The estimation of accurate storm surge is essential for the engineering design of coastal structures. In this study, we estimated the respond of mean sea level winds, tide, waves, and sea-level rise using a local coastal model. A fully coupled hydrodynamic and wave model was implemented to obtain storm surge from different phenomena. The simulations of water level fluctuations due to these parameters were analyzed with the wind forces identified with tidal observations in the Port of Kong. Extreme value analysis was performed to determine the fluctuations associated with different return periods. These data were combined by sea-level rise projections are combined with resulted value. The worst and best scenario of storm surges for each return period were determined for engineering design purposes.


2011 ◽  
Vol 1 (32) ◽  
pp. 23 ◽  
Author(s):  
Christoph Mudersbach ◽  
Juergen Jensen

In this paper, a non-stationary extreme value analysis approach is introduced in order to determine coastal design water levels for future time horizons. The non-stationary statistical approach is based on the Generalized Extreme Value (GEV) distribution and a L-Moment parameter estimation as well as a Maximum-Likelihood-estimation. An additional approach considers sea level rise scenarios in the non-stationary extreme value analysis. All the methods are applied to the annual maximum water levels from 1849-2007 at the German North Sea gauge at Cuxhaven. The results show, that the non-stationary GEV approach is suitable for determining coastal design water levels.


2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


2021 ◽  
Vol 9 (12) ◽  
pp. 1347
Author(s):  
Jessie Louisor ◽  
Jérémy Rohmer ◽  
Thomas Bulteau ◽  
Faïza Boulahya ◽  
Rodrigo Pedreros ◽  
...  

As low-lying coastal areas can be impacted by flooding caused by dynamic components that are dependent on each other (wind, waves, water levels—tide, atmospheric surge, currents), the analysis of the return period of a single component is not representative of the return period of the total water level at the coast. It is important to assess a joint return period of all the components. Based on a semiparametric multivariate extreme value analysis, we determined the joint probabilities that significant wave heights (Hs), wind intensity at 10 m above the ground (U), and still water level (SWL) exceeded jointly imposed thresholds all along the Corsica Island coasts (Mediterranean Sea). We also considered the covariate peak direction (Dp), the peak period (Tp), and the wind direction (Du). Here, we focus on providing extreme scenarios to populate coastal hydrodynamic models, SWAN and SWASH-2DH, in order to compute the 100-year total water level (100y-TWL) all along the coasts. We show how the proposed multivariate extreme value analysis can help to more accurately define low-lying zones potentially exposed to coastal flooding, especially in Corsica where a unique value of 2 m was taken into account in previous studies. The computed 100y-TWL values are between 1 m along the eastern coasts and a maximum of 1.8 m on the western coast. The calculated values are also below the 2.4 m threshold recommended when considering the sea level rise (SLR). This highlights the added value of performing a full integration of extreme offshore conditions, together with their dependence on hydrodynamic simulations for screening out the coastal areas potentially exposed to flooding.


Wetlands ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 771-785 ◽  
Author(s):  
Xiaorong Li ◽  
Nicoletta Leonardi ◽  
Andrew J. Plater

Abstract Coastal wetland ecosystems and biodiversity are susceptible to changes in salinity brought about by the local effects of climate change, meteorological extremes, coastal evolution and human intervention. This study investigates changes in the salinity of surface water and the associated impacts on back-barrier wetlands as a result of breaching of a barrier beach and under the compound action of different surge heights, accelerated sea-level rise (SLR), river discharge and rainfall. We show that barrier breaching can have significant effects in terms of vegetation die-back even without the occurrence of large storm surges or in the absence of SLR, and that rainfall alone is unlikely to be sufficient to mitigate increased salinity due to direct tidal flushing. Results demonstrate that an increase in sea level corresponding to the RCP8.5 scenario for year 2100 causes a greater impact in terms of reedbed loss than storm surges up to 2 m with no SLR. In mitigation of the consequent changes in wetland ecology, regulation of relatively small and continuous river discharge can be regarded as a strategy for the management of coastal back-barrier wetland habitats and for the maintenance of brackish ecosystems. As such, this study provides a tool for scoping the potential impacts of storms, climate change and alternative management strategies on existing wetland habitats and species.


2020 ◽  
Vol 8 (4) ◽  
pp. 289 ◽  
Author(s):  
Vincent S. Neary ◽  
Seongho Ahn ◽  
Bibiana E. Seng ◽  
Mohammad Nabi Allahdadi ◽  
Taiping Wang ◽  
...  

Best practices and international standards for determining n-year return period extreme wave (sea states) conditions allow wave energy converter designers and project developers the option to apply simple univariate or more complex bivariate extreme value analysis methods. The present study compares extreme sea state estimates derived from univariate and bivariate methods and investigates the performance of spectral wave models for predicting extreme sea states at buoy locations within several regional wave climates along the US East and West Coasts. Two common third-generation spectral wave models are evaluated, a WAVEWATCH III® model with a grid resolution of 4 arc-minutes (6–7 km), and a Simulating WAves Nearshore model, with a coastal resolution of 200–300 m. Both models are used to generate multi-year hindcasts, from which extreme sea state statistics used for wave conditions characterization can be derived and compared to those based on in-situ observations at National Data Buoy Center stations. Comparison of results using different univariate and bivariate methods from the same data source indicates reasonable agreement on average. Discrepancies are predominantly random. Large discrepancies are common and increase with return period. There is a systematic underbias for extreme significant wave heights derived from model hindcasts compared to those derived from buoy measurements. This underbias is dependent on model spatial resolution. However, simple linear corrections can effectively compensate for this bias. A similar approach is not possible for correcting model-derived environmental contours, but other methods, e.g., machine learning, should be explored.


Author(s):  
Ebru Demirci ◽  
Ian Young

Concerns about climate change highlights the needs to understand extreme sea levels and the resulting flood exposure in coastal areas on a global scale. The combined impacts of storm surge, tide, breaking wave setup and potential sea level rise will pose many economic, societal and engineering challenges in coming years. In order to predict the global coastal flood risk, a global sea level dataset of sufficiently long duration is required to undertake extreme value analysis. This presentation will outline the development and application of such a dataset.


2018 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. Aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute to global sea level rise between 1.9 and 13.0 cm until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking Helheim and Store Glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


Author(s):  
Daniel C. Brooker ◽  
Geoffrey K. Cole ◽  
Jason D. McConochie

Extreme value analysis for the prediction of long return period met-ocean conditions is often based upon hindcast studies of wind and wave conditions. The random errors associated with hindcast modeling are not usually incorporated when fitting an extreme value distribution to hindcast data. In this paper, a modified probability distribution function is derived so that modeling uncertainties can be explicitly included in extreme value analysis. Maximum likelihood estimation is then used to incorporate hindcast uncertainty into return value estimates and confidence intervals. The method presented here is compared against simulation techniques for accounting for hindcast errors. The influence of random errors within modeled datasets on predicted 100 year return wave estimates is discussed.


Sign in / Sign up

Export Citation Format

Share Document