Debris Capture Distribution in Deepwater Wells with Riser Filter Tool

2021 ◽  
Author(s):  
Peter Reid Maher

Abstract In deepwater and ultra-deepwater wells, hydraulic debris removal, or the circulating of debris to surface, serves as the primary method of removing debris from the wellbore during the displacement of drilling fluid to completion fluid. In a standard cased hole completion, this operation typically takes place after the last liner has been set and before the completion is run. The likelihood of successful hydraulic debris removal is dependent on many factors such as debris particle size and density, flow rates and the resulting average annular velocity in the annulus, pipe movement, and the properties of the fluids circulated in the well. Mechanical debris extraction tools such as downhole filters and magnets are used to capture significant amounts of debris that are unable to be hydraulically removed from the wellbore. Versions of downhole filters and magnets that are run inside of casing and magnets run inside of the riser are common across the industry, however downhole filter tools run in the riser are less common and their use in these operations is not an industry standard. This paper examines a data set generated over two years containing more than 30 runs that include the use of a downhole filter tool run in the riser during wellbore clean out operations.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 134-135
Author(s):  
Michaela B Braun ◽  
Kara M Dunmire ◽  
Michael Sodak ◽  
Jerry Shepherd ◽  
Randy Fisher ◽  
...  

Abstract This study was performed to evaluate hammermill tip speed, assistive airflow and screen hole diameter on hammermill throughput and characteristics of ground corn. Corn was ground using two Andritz hammermills (Model: 4330–6, Andritz Feed & Biofuel, Muncy,PA) measuring 1-m in diameter each equipped with 72 hammers and 300 HP motors. Treatments were arranged in a 3 × 3 × 3 factorial design with 3 tip speeds (3,774, 4,975, and 6,176 m/min), 3 screen hole diameters (2.3, 3.9 and 6.3 mm), and 3 air flow rates (1,062, 1,416, and 1,770 fan RPM). Corn was ground on 3 separate days to create 3 replications and treatments were randomized within day. Samples were collected and analyzed for moisture, particle size, and flowability characteristics. Data were analyzed using the GLIMMIX procedure of SAS 9.4 with grinding run serving as the experimental unit and day serving as the block. There was a 3-way interaction for standard deviation (Sgw), (linear screen hole diameter × linear hammer tip speed × linear air flow, P = 0.029). There was a screen hole diameter × hammer tip speed interaction (P < 0.001) for geometric mean particle size dgw (P < 0.001) and composite flow index (CFI) (P < 0.001). When tip speed increased from 3,774 to 6,176 m/min the rate of decrease in dgw was greater as screen hole diameter increased from 2.3 to 6.3 mm resulting in a 67, 111, and 254 µm decrease in dgw for corn ground using the 2.3, 3.9, and 6.3 mm screen hole diameter, respectively. For CFI, increasing tip speed decreased the CFI of ground corn when ground using the 3.9 and 6.3 mm screen. However, when grinding corn using the 2.3 mm screen, there was no evidence of difference in CFI when increasing tip speed. In conclusion, the air flow rate did not influence dgw of corn but hammer tip speed and screen size were altered and achieved a range of dgw from 304 to 617 µm.


2004 ◽  
Vol 4 (5) ◽  
pp. 5135-5200 ◽  
Author(s):  
J. S. Reid ◽  
R. Koppmann ◽  
T. F. Eck ◽  
D. P. Eleuterio

Abstract. The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.


2021 ◽  
Vol 14 (4) ◽  
pp. 3049-3070
Author(s):  
Fritz Waitz ◽  
Martin Schnaiter ◽  
Thomas Leisner ◽  
Emma Järvinen

Abstract. A major challenge for in situ observations in mixed-phase clouds remains the phase discrimination and sizing of cloud hydrometeors. In this work, we present a new method for determining the phase of individual cloud hydrometeors based on their angular-light-scattering behavior employed by the PHIPS (Particle Habit Imaging and Polar Scattering) airborne cloud probe. The phase discrimination algorithm is based on the difference of distinct features in the angular-scattering function of spherical and aspherical particles. The algorithm is calibrated and evaluated using a large data set gathered during two in situ aircraft campaigns in the Arctic and Southern Ocean. Comparison of the algorithm with manually classified particles showed that we can confidently discriminate between spherical and aspherical particles with a 98 % accuracy. Furthermore, we present a method for deriving particle size distributions based on single-particle angular-scattering data for particles in a size range from 100 µm ≤ D ≤ 700 µm and 20 µm ≤ D ≤ 700 µm for droplets and ice particles, respectively. The functionality of these methods is demonstrated in three representative case studies.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050101
Author(s):  
Mojdeh Safari ◽  
Amir Amani ◽  
Tajudeen Adebileje ◽  
Jafar Ai ◽  
Seyed Mahdi Rezayat ◽  
...  

In recent years, microfluidic devices present unique advantages for the development of a new generation of nanoparticle synthesis method compared to bulk methods. In this study, we report a microfluidic flow-focusing method for the production of all trans retinoic acid (ATRA)-loaded methoxy poly(ethylene glycol)-poly(lactide-coglycolide) (mPEG-PLGA) nanoparticles (NPs). Box–Behnken experimental design (BBD) was applied to optimize of formulation ingredients and process conditions with minimum particle size, maximum drug loading% (DL%) and encapsulation efficiency% (EE%). Polymer concentration, drug concentration and flow rates of solvent (S) and antisolvent (AS) were selected as independent variables. Based on optimization strategy, minimum particle size achieved shows average (SD) particle size of [Formula: see text][Formula: see text]nm with DL of [Formula: see text][Formula: see text]wt.% and EE of [Formula: see text][Formula: see text]wt.%, respectively. While maximum DL has been reported to be [Formula: see text][Formula: see text]wt.% with particle size of [Formula: see text][Formula: see text]nm and EE of [Formula: see text][Formula: see text]wt.%, respectively. Moreover, the results have shown that the AS/S ratio represents the most significant effect on particle size. Indeed, increasing the AS flow rate directly results in generating smaller particles. The AS/S ratio represents the least significant effect on DL%, such that, at fixed flow rates, higher DL was observed at high concentration of drug and lower concentration of polymer. In conclusion, optimization of the ATRA-loaded mPEG-PLGA NPs by BBD yielded in a favorable drug carrier for ATRA that could provide a new treatment modality for different malignancies.


Soil Research ◽  
1993 ◽  
Vol 31 (4) ◽  
pp. 407 ◽  
Author(s):  
GD Buchan ◽  
KS Grewal ◽  
JJ Claydon ◽  
RJ Mcpherson

The X-ray attenuation (Sedigraph) method for particle-size analysis is known to consistently estimate a finer size distribution than the pipette method. The objectives of this study were to compare the two methods, and to explore the reasons for their divergence. The methods are compared using two data sets from measurements made independently in two New Zealand laboratories, on two different sets of New Zealand soils, covering a range of textures and parent materials. The Sedigraph method gave systematically greater mass percentages at the four measurement diameters (20, 10, 5 and 2 �m). For one data set, the difference between clay (<2 �m) percentages from the two methods is shown to be positively correlated (R2 = 0.625) with total iron content of the sample, for all but one of the soils. This supports a novel hypothesis that the typically greater concentration of Fe (a strong X-ray absorber) in smaller size fractions is the major factor causing the difference. Regression equations are presented for converting the Sedigraph data to their pipette equivalents.


2018 ◽  
Vol 11 (4) ◽  
pp. 2085-2100 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Vladimir Rozanov ◽  
Patricia Liebing ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Information about aerosols in the Earth's atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S) for 10 years (2002–2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A quasi-biannual oscillation (QBO) pattern at upper altitudes (28–32 km) is prominent in the anomalies of the analysed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes, decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Felipe Chagas ◽  
Paulo R. Ribeiro ◽  
Otto L. A. Santos

Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related to drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high-pressure/high-temperature (HPHT) zones, deep and ultradeep water, and other challenges, the use nonaqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as a result of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic, and environmental aspects. Well control simulators are a valuable tool to support well control operations and preserve the well integrity, verifying operational parameters and to assist drilling engineers in the decision-making process during well control operations and kick situations. They are also important computational tools for rig personnel training. This study presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller's method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids pressure–volume–temperature (PVT) properties obtained from the experimental data. The simulator results were compared to a test well data set as well to the published results from other kick simulators.


Author(s):  
Erin A. Onat ◽  
Trey W. Walters ◽  
David M. Mobley ◽  
James J. Mead

As pipe networks age, build-up [scaling] and corrosion decrease pipe diameter and increase pipe roughness, leading to significant pressure drops and lower flow rates. When modeling the hydraulics of these systems, calibrating the pipes to account for additional scaling and/or fouling can be vital to accurately predicting the hydraulic behavior of the system. An automated, multi-variable goal-seeking software was used to calibrate the raw water system of the Duke McGuire Nuclear Station (MNS). This calibration process involved three phases. The first phase was the testing of the automated, multivariable goal-seeking software on a previously calibrated system. The second phase was the calibration of a partial data set. The third phase was the calibration of a complete data set. The automated goal-seeking software was found to have varying degrees of success in each phase. At the conclusion of the calibration process, the partial data calibration of two parallel systems at MNS yielded average overall calibration accuracies of 2.1% and 1% for flow rates, and 1.2 psig (8.4 kPa-g) and 1.7 psig (11.9 kPa-g) for pressures. The complete data calibration of one of these systems at MNS yielded an average overall calibration accuracy of 2.3% for flow rates, and 1.4 psig (9.5 kPa-g) for pressures.


Sign in / Sign up

Export Citation Format

Share Document