scholarly journals The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

2015 ◽  
Vol 7 (6) ◽  
pp. 484 ◽  
Author(s):  
So-Hyoun Lee ◽  
Youn-Mook Lim ◽  
Sung In Jeong ◽  
Sung-Jun An ◽  
Seong-Soo Kang ◽  
...  
Materials ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 320 ◽  
Author(s):  
You-Jin Lee ◽  
Sung-Jun An ◽  
Eun-Bin Bae ◽  
Hui-Jeong Gwon ◽  
Jong-Seok Park ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0221286 ◽  
Author(s):  
Fernanda Coelho ◽  
Maurício Cavicchioli ◽  
Sybele Saska Specian ◽  
Raquel Mantuaneli Scarel-Caminaga ◽  
Letícia de Aquino Penteado ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 230
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Leticia Freitas de Mendes Brasil ◽  
Járede Carvalho Pereira ◽  
Hesham Mohammed Al-Sharani ◽  
...  

Guided bone regeneration was studied to establish protocols and develop new biomaterials that revealed satisfactory results. The present study aimed to comparatively evaluate the efficiency of the bacterial cellulose membrane (Nanoskin®) and collagen membrane Bio-Gide® in the bone repair of 8-mm critical size defects in rat calvaria. Seventy-two adult male rats were divided into three experimental groups (n = 24): the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and BC—bacterial cellulose membrane group (experimental group). The comparison periods were 7, 15, 30, and 60 days postoperatively. Histological, histometric, and immunohistochemical analyses were performed. The quantitative data were subjected to 2-way ANOVA and Tukey’s post-test, and p < 0.05 was considered significant. At 30 and 60 days postoperatively, the BG group showed more healing of the surgical wound than the other groups, with a high amount of newly formed bone (p < 0.001), while the BC group showed mature connective tissue filling the defect. The inflammatory cell count at postoperative days 7 and 15 was higher in the BC group than in the BG group (Tukey’s test, p = 0.006). At postoperative days 30 and 60, the area of new bone formed was greater in the BG group than in the other groups (p < 0.001). Immunohistochemical analysis showed moderate and intense immunolabeling of osteocalcin and osteopontin at postoperative day 60 in the BG and BC groups. Thus, despite the promising application of the BC membrane in soft-tissue repair, it did not induce bone repair in rat calvaria.


2021 ◽  
Vol 22 (12) ◽  
pp. 6269
Author(s):  
Anna Nowak ◽  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Magdalena Perużyńska ◽  
...  

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, in vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2166
Author(s):  
Jeong-Kui Ku ◽  
In-Woong Um ◽  
Mi-Kyoung Jun ◽  
Il-hyung Kim

An autogenous, demineralized, dentin matrix is a well-known osteo-inductive bone substitute that is mostly composed of type I collagen and is widely used in implant dentistry. This single case report describes a successful outcome in guided bone regeneration and dental implantation with a novel human-derived collagen membrane. The authors fabricated a dentin-derived-barrier membrane from a block-type autogenous demineralized dentin matrix to overcome the mechanical instability of the collagen membrane. The dentin-derived-barrier acted as an osteo-inductive collagen membrane with mechanical and clot stabilities, and it replaced the osteo-genetic function of the periosteum. Further research involving large numbers of patients should be conducted to evaluate bone forming capacity in comparison with other collagen membranes.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 712
Author(s):  
Milena Radenković ◽  
Said Alkildani ◽  
Ignacio Stoewe ◽  
James Bielenstein ◽  
Bernd Sundag ◽  
...  

Collagen-based resorbable barrier membranes have been increasingly utilized for Guided Bone Regeneration (GBR), as an alternative to non-resorbable synthetic membranes that require a second surgical intervention for removal. One of the most important characteristics of a resorbable barrier membrane is its mechanical integrity that is required for space maintenance and its tissue integration that plays a crucial role in wound healing and bone augmentation. This study compares a commercially available porcine-derived sugar-crosslinked collagen membrane with two non-crosslinked collagen barrier membranes. The material analysis provides an insight into the influence of manufacturing on the microstructure. In vivo subcutaneous implantation model provides further information on the host tissue reaction of the barrier membranes, as well as their tissue integration patterns that involve cellular infiltration, vascularization, and degradation. The obtained histochemical and immunohistochemical results over three time points (10, 30, and 60 days) showed that the tissue response to the sugar crosslinked collagen membrane involves inflammatory macrophages in a comparable manner to the macrophages observed in the surrounding tissue of the control collagen-based membranes, which were proven as biocompatible. The tissue reactions to the barrier membranes were additionally compared to wounds from a sham operation. Results suggest wound healing properties of all the investigated barrier membranes. However, the sugar-crosslinked membrane lacked in cellular infiltration and transmembraneous vascularization, providing an exclusive barrier function in GBR. Moreover, this membrane maintained a similar swelling ratio over examined timepoints, which suggests a very slow degradation pattern and supports its barrier function. Based on the study results, which showed biocompatibility of the sugar crosslinked membrane and its stability up to 60 days post-implantation, it can be concluded that this membrane may be suitable for application in GBR as a biomaterial with exclusive barrier functionality, similar to non-resorbable options.


Sign in / Sign up

Export Citation Format

Share Document