scholarly journals Is the Bacterial Cellulose Membrane Feasible for Osteopromotive Property?

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 230
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Leticia Freitas de Mendes Brasil ◽  
Járede Carvalho Pereira ◽  
Hesham Mohammed Al-Sharani ◽  
...  

Guided bone regeneration was studied to establish protocols and develop new biomaterials that revealed satisfactory results. The present study aimed to comparatively evaluate the efficiency of the bacterial cellulose membrane (Nanoskin®) and collagen membrane Bio-Gide® in the bone repair of 8-mm critical size defects in rat calvaria. Seventy-two adult male rats were divided into three experimental groups (n = 24): the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and BC—bacterial cellulose membrane group (experimental group). The comparison periods were 7, 15, 30, and 60 days postoperatively. Histological, histometric, and immunohistochemical analyses were performed. The quantitative data were subjected to 2-way ANOVA and Tukey’s post-test, and p < 0.05 was considered significant. At 30 and 60 days postoperatively, the BG group showed more healing of the surgical wound than the other groups, with a high amount of newly formed bone (p < 0.001), while the BC group showed mature connective tissue filling the defect. The inflammatory cell count at postoperative days 7 and 15 was higher in the BC group than in the BG group (Tukey’s test, p = 0.006). At postoperative days 30 and 60, the area of new bone formed was greater in the BG group than in the other groups (p < 0.001). Immunohistochemical analysis showed moderate and intense immunolabeling of osteocalcin and osteopontin at postoperative day 60 in the BG and BC groups. Thus, despite the promising application of the BC membrane in soft-tissue repair, it did not induce bone repair in rat calvaria.

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Tamires Mello Francatti ◽  
Ana Carulina Rezende de Moares Ferreira ◽  
Járede Carvalho Pereira ◽  
...  

Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Carolina Ferrairo Danieletto-Zanna ◽  
Vinícius Ferreira Bizelli ◽  
Guilherme André Del Arco Ramires ◽  
Tamires Melo Francatti ◽  
Paulo Sérgio Perri de Carvalho ◽  
...  

Membranes that aid the guided bone regeneration (GBR) process have been the subject of studies of compatible biomaterials that contribute to this repair process. The present study compared different membranes used in critical-size defects of rat calvaria by assessing GBR as well as histological, histomorphometric, and immunohistochemical reactions. Forty-eight male albino Wistar rats were randomly allocated into four groups (n = 12 each), namely, C: membrane-free control group (only blood clot, negative control group); BG: porcine collagen membrane group (Bio-Gide®, positive control group); GD: bovine cortical membrane group (first experimental group); and GDF: thicker bovine cortical membrane group (second experimental group). Rats were euthanized at 30 and 60 days postoperatively. Quantitative data from the histometric analysis were submitted to two-way ANOVA and Tukey’s posttest when p<0.05. Histomorphometric results of the thicker bovine cortical membrane at 30 and 60 days were promising, showing improved new bone formation values (p<0.05), and the CD group presented similar results in both analysis periods, being surpassed only by the GDF group (p<0.05). The immunohistochemical results were associated with the histomorphometric data. A less-thick membrane also assisted in GBR. All membranes promoted GBR, especially the positive control and experimental groups.


2015 ◽  
Vol 7 (6) ◽  
pp. 484 ◽  
Author(s):  
So-Hyoun Lee ◽  
Youn-Mook Lim ◽  
Sung In Jeong ◽  
Sung-Jun An ◽  
Seong-Soo Kang ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6269
Author(s):  
Anna Nowak ◽  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Magdalena Perużyńska ◽  
...  

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, in vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


2013 ◽  
Vol 65 (3) ◽  
pp. 715-721 ◽  
Author(s):  
R.L. Buchaim ◽  
J.C. Andreo ◽  
A. C. Rodrigues ◽  
D.V. Buchaim ◽  
D.V. Dias ◽  
...  

The objective of this study was to evaluate whether demineralized bovine bone (Gen-ox®) alters bone neoformation in rats submitted to alcoholism. Forty male rats were separated into two groups of 20 rats and distributed as follows: Group E1, which received 25% ethanol and a surgical cavity filled only by a blood clot, and Group E2, which received 25% ethanol and a surgical cavity filled with Gen-ox®. The animals were euthanized at 10, 20, 40 and 60 days after surgery and necropsy was performed. The histomorphological and histometric analyses of the area of connective tissue and bone neoformation showed that the reorganization of the bone marrow and full repair of the surgical cavity in Group E1 occurred more quickly than in Group E2. It was also noted that in the final period the animals in Group E2 showed areas of connective tissue and thick bone trabeculae around the particles of the implant. It can be concluded that the use of Gen-ox® delayed the process of bone repair in alcoholic rats, although it can be used as filling material because it shows osteoconductive activity, as evidenced by bone tissue formation around the graft particles.


2020 ◽  
Vol 33 (8) ◽  
pp. 321-332 ◽  
Author(s):  
Bambang Kuswandi ◽  
Ni P.N. Asih ◽  
Dwi K. Pratoko ◽  
Nia Kristiningrum ◽  
Mehran Moradi

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1293
Author(s):  
Paulo Wilson Maia ◽  
Marcelo Lucchesi Teixeira ◽  
Luís Guilherme Scavone de Macedo ◽  
Antonio Carlos Aloise ◽  
Celio Amaral Passos Junior ◽  
...  

Platelet-rich fibrin (PRF) is an autologous material used to improve bone regeneration when associated with bone grafts. It affects tissue angiogenesis, increasing the healing process and, theoretically, presenting potential to increase bone neoformation. The aim of this study was to verify, histomorphometrically, the effects of the association of PRF to a xenograft. Twelve adult white New Zealand rabbits were randomly assigned into two groups containing six animals each. After general anesthesia of the animals, two critical defects of 12 mm were created in the rabbit calvaria, one on each side of the sagittal line. Each defect was filled with the following biomaterials: in the control group (CG), xenograft hydrated with saline solution filling one defect and xenograft hydrated with saline solution covered with collagen membrane on the other side; in the test group (TG), xenograft associated with PRF filling the defect of one side and xenograft associated with PRF covered with collagen membrane on the other side. After eight weeks the animals were euthanized and a histomorphometric analysis was performed. The results showed that in the sites that were covered with collagen membrane, there was no statistically significant difference for all the analyzed parameters. However, when comparing the groups without membrane coverage, a statistically significant difference could be observed for the vital mineralized tissue (VMT) and nonmineralized tissue (NMT) parameters, with more VMT in the test group and more NMT in the control group. Regarding the intragroup comparison, the use of the membrane coverage presented significant outcomes in both groups. Therefore, in this experimental model, PRF did not affect the levels of bone formation when a membrane coverage technique was used. However, higher levels of bone formation were observed in the test group when membrane coverage was not used.


1993 ◽  
Vol 50 (6) ◽  
pp. 965-969 ◽  
Author(s):  
Hideki Shibazaki ◽  
Shigenori Kuga ◽  
Fumihiko Onabe ◽  
Makoto Usuda

Sign in / Sign up

Export Citation Format

Share Document