scholarly journals Type I IFN Drives Experimental Systemic Lupus Erythematosus by Distinct Mechanisms in CD4 T Cells and B Cells

2020 ◽  
Vol 4 (3) ◽  
pp. 140-152 ◽  
Author(s):  
Jared Klarquist ◽  
Rachel Cantrell ◽  
Maria A. Lehn ◽  
Kristin Lampe ◽  
Cassandra M. Hennies ◽  
...  
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Danielle L Michell ◽  
Jared L Moore ◽  
Michelle J Ormseth ◽  
Stuart R Landstreet ◽  
Shilin Zhao ◽  
...  

Extracellular small non-coding RNAs (sRNAs) are a new class of disease biomarkers and are transferred between cells by high-density lipoproteins (HDL) in a novel form of intercellular communication. In chronic inflammatory states and auto-immunity, HDL can become dysfunctional, likely through alterations in its diverse cargo, including changes to sRNA signatures. We have previously found that HDL-microRNAs (miRNA) are altered in systemic lupus erythematosus (SLE); however, miRNAs are just one type of sRNAs. As such we hypothesized that changes to HDL-sRNA cargo and cell-to-cell communication in SLE extend beyond miRNAs. To test this hypothesis, HDL was isolated from SLE and control (n=6-8) subjects by density-gradient ultracentrifugation followed by size-exclusion chromatography. High-throughput sRNA sequencing of HDL demonstrated that tRNA-derived sRNAs (tDRs) were the most abundant class of sRNAs on HDL and were significantly altered in SLE subjects compared to controls (26 up, 10 down). In addition, circulating levels of angiogenin, an RNaseIII enzyme capable of cleaving parent tRNAs into tDRs, was also significantly ( P <0.05) increased in SLE plasma. To determine if tDRs are altered in CD4+ T cells in SLE subjects, real-time PCR was used to quantify candidate tDRs, and we found that tDR-GlyGCC levels were significantly increased 4.2-fold in SLE ( P <0.01). Most importantly, we found that T cells exported tDR-GlyGCC to HDL. To determine if T cell exported tDR-GlyGCC is transferred to other cells by HDL, ex vivo studies were completed using Trans-PhotoActivatable-Ribonucleoside-CrossLinking-ImmunoPrecipitation high-throughput Sequencing (Trans-PAR-CLIPseq) to trace sRNAs from human CD4+ T cells to HDL and then to recipient CD14+ monocytes and CD19+ B-cells. Using this approach, we found a cassette of T cell originating sRNAs, including tDR-GlyGCC, transferred by HDL to recipient B cells and monocytes and loaded onto RNA-Induced Silencing Complexes (RISC) targeting genes associated with inflammation. Here, we demonstrate that HDL facilitates the intercellular transfer of sRNAs between immune cells and these sRNAs are altered in SLE. This altered communication may contribute to T cell imbalance and B cell activation observed in SLE.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 228.1-228
Author(s):  
Q. Zhou ◽  
L. Long

Background:Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that can virtually involve any organ system of the body. Many efforts have been made to elucidate the pathogeny, but the molecular mechanisms are still not understood. Lymphocytes are considered to play an important role in SLE pathogenesis. Aberrantly activated T cells mediate inflammatory responses and activate B cells to differentiate and produce autoantibodies, resulting in multisystem manifestations [1, 2]. With the wide use of gene technique, more genetic studies on SLE were performed and differentially expressed genes (DEGs) were identified. Integrating and re-analyzing these data can help us understand the molecular mechanisms and identify diagnostic and therapeutic targets of SLE.Objectives:In this study, we downloaded the microarray datasets GSE4588 and GSE10325 from Gene Expression Omnibus (GEO) database to identify the candidate genes in T and B cells respectively.Methods:Datasets GSE4588 and GSE10325 were downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo). The DEGs between T or B cells and control samples were screened using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r). logFC |fold change| >1 and P-value <0.05 were considered statistically significant. To analyze the function of DEGs, biological analyses were performed using DAVID database (http://david.ncifcrf.gov). P<0.05 was considered statistically significant. The PPI networks of DEGs were constructed using STRING database, and an interaction with a combined score >0.4 was considered statistically significant. The PPI networks were drawn using Cytoscape and the most significant module was identified using MCODE. The criteria for selection were: MCODE scores >5, degree cut-off=2, node score cut-off=0.2, Max depth=100 and k-score=2. The hub genes were selected with degrees ≥10.Results:After standardization of the microarray results, DEGs in T and B cells were identified respectively (Fig. 1).Changes in biological processes in T and B cells were both mainly enriched in type I interferon signalling pathway, defense response to virus, and negative regulation of viral genome replication. Changes in cell component in T cells was enriched in the cytosol while in B cells it was in cytoplasm. KEGG pathway analysis revealed that the DEGs of T cells were mainly enriched in influenza A, measles, herpes simplex infection and hepatitis C, while DEGs of B cells were mainly enriched in measles. Changes in molecular function were not listed because the p values were ≥0.05.4 genes were identified as hub genes (2 in each cell population). In T cells, the hub genes are PLSCR1 and GINS2. PLSCR1 may contribute to the prothrombotic tendency in SLE. GINS2 is involved in the initiation of DNA replication and cell cycle progression. In B cells, the hub genes are ISG15 and TOP2A. Increased ISG15 is correlated with lymphocytopenia in SLE patients. TOP2A encodes a DNA topoisomerase and anti-topoisomerase II antibody could be found in SLE.Conclusion:In our study, 2 mRNA microarray datasets were analyzed to obtain DEGs between SLE T and B cells versus healthy controls. A total of 56 DEGs were identified in T cells and 83 in B cells. Most of the DEGs were upregulated. Changes in biological processes in T and B cells were mainly related to type I interferon signalling pathway and anti-virus function. KEGG also showed the same. PLSCR1 and GINS2 were hub genes in T cells while ISG15 and TOP2A were hub genes in B cells. Overexpression of these genes might play an important role in the pathogenesis of SLE.References:[1]Ohl, K. and K. Tenbrock,Regulatory T cells in systemic lupus erythematosus.Eur J Immunol, 2015.45(2): p. 344-55.[2]Moulton, V.R. and G.C. Tsokos,T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity.J Clin Invest, 2015.125(6): p. 2220-7.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document