Faculty Opinions recommendation of Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus.

Author(s):  
Laurence Turka ◽  
Scott Lieberman
2011 ◽  
Vol 3 (73) ◽  
pp. 73ra20-73ra20 ◽  
Author(s):  
G. S. Garcia-Romo ◽  
S. Caielli ◽  
B. Vega ◽  
J. Connolly ◽  
F. Allantaz ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2018 ◽  
Vol 20 (1) ◽  
Author(s):  
M. Javad Wahadat ◽  
Iris L. A. Bodewes ◽  
Naomi I. Maria ◽  
Cornelia G. van Helden-Meeuwsen ◽  
Annette van Dijk-Hummelman ◽  
...  

2020 ◽  
Author(s):  
Laura Barnabei ◽  
Hicham Lamrini ◽  
Mathieu Castela ◽  
Nadia Jeremiah ◽  
Marie-Claude Stolzenberg ◽  
...  

AbstractSystemic Lupus Erythematosus (SLE) is an autoimmune and inflammatory disease characterized by uncontrolled production of autoantibodies and inflammatory cytokines such as the type-I interferons. Due to the lack of precise pathophysiological mechanisms, treatments are based on broad unspecific immunossupression. To identify genetic factors associated with SLE we performed whole exome sequencing and identified two RELA heterozygous activating mutations in 3 early-onset and familial SLE cases. The corresponding RELA/p65 mutant were abundant in the nucleus but poorly activate transcription of genes controlled by NF-κB consensus sequences. The co-expression of the mutant and wild-type RELA/p65 strongly activated the expression of genes controlled by the IFNα-consensus sequences. These molecular mechanisms lead to the overproduction of type-I IFN in the patients’ cells. Our findings highlight a novel mechanism of autoimmunity where these new RELA mutants are transactivating the type-I IFN genes and are thus promoting type-I interferon production and early-onset SLE, thereby paving the way to the identification of new and specific therapeutic targets.SummaryHeterozygous RELA mutations are associated with Systemic Lupus Erythematosus, with increased expression of genes controlled by the IFNα-consensus sequences.


2020 ◽  
Vol 4 (3) ◽  
pp. 140-152 ◽  
Author(s):  
Jared Klarquist ◽  
Rachel Cantrell ◽  
Maria A. Lehn ◽  
Kristin Lampe ◽  
Cassandra M. Hennies ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 126-128
Author(s):  
A. M. Lila ◽  
S. K. Soloviev ◽  
T. V. Popkova

On April 28, 2021, a meeting of the Council of Experts was held with the participation of the leading experts in the field of rheumatic diseases, approaches to the treatment of patients with systemic lupus erythematosus (SLE) were discussed. The issues of medical care for patients with SLE and their routing, key points of Russian and international clinical guidelines for the management of patients with SLE, as well as the role of interferon (IFN) type I in the pathogenesis of the disease were discussed. It is noted that the management of patients with SLE requires a multidisciplinary approach. The basis of therapy is the use of glucocorticoids (GC), immunosuppressive drugs and their combinations. But long-term use of GC in patients with SLE leads to severe complications. Early prescription of biological disease-modifying antirheumatic drugs (bDMARDs) allows to achieve the greatest effect and prevent the development of irreversible organ damage associated with SLE. Currently data from three clinical trials on the efficacy and safety of the type I IFN inhibitor anifrolumab are available. During the discussion, experts defined the clinical profile of a patient with SLE, for whom administration of bDMARD therapy is indicated. According to experts, the use of a type I IFN inhibitor in routine clinical practice can improve disease outcomes in both short and long term.


2021 ◽  
pp. 16-20
Author(s):  
C. Erramuspe ◽  
M. Racca ◽  
M. Siemsen ◽  
M. Pelosso ◽  
M. Quaglia ◽  
...  

Introduction: type I interferon (IFN) is a cytokine that plays a fundamental role in the pathogenesis of Systemic Lupus Erythematosus (SLE). Different levels of this cytokine could explain the heterogeneity of this pathology and be useful to evaluate its activity. Objectives: to determine the serum type I IFN levels in patients with SLE and evaluate its usefulness as a biomarker of activity. Material and Method: 16 patients with SLE (ACR 1997) and 16 controls. Methods: Disease activity (SLEDAI-2K), organ damage (SLICC), type I IFN (HEK-Blue- IFNα/β), anti-dsDNA antibodies (Indirect Immunofluorescence), anti-ENA antibodies (ELISA), C3-C4 (Immunoturbidimetry). Statistics: InfoStat/Instat/MedCalc. P values <0.05 were statistically significant. Results: an increase in IFN concentration was observed in the SLE group respect to the control (p <0.05). Patients with IFN values above the cut-off point were associated with the presence of anti-dsDNA antibodies (OR: 13.33; p<0.05). Hypocomplementemic patients and those with a SLEDAI-2K score greater than 8 had higher IFN levels compared to patients with normal complement and a lower index score, respectively (p<0.05). Conclusions: these results suggest the importance that the determination of IFN type I could have for the monitoring of SLE activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Helena Enocsson ◽  
Jonas Wetterö ◽  
Maija-Leena Eloranta ◽  
Birgitta Gullstrand ◽  
Cecilia Svanberg ◽  
...  

ObjectivesType I interferons (IFNs) are central and reflective of disease activity in systemic lupus erythematosus (SLE). However, IFN-α levels are notoriously difficult to measure and the type I IFN gene signature (IGS) is not yet available in clinical routine. This study evaluates galectin-9 and an array of chemokines/cytokines in their potential as surrogate markers of type I IFN and/or SLE disease activity.MethodsHealthy controls and well-characterized Swedish SLE patients from two cross-sectional cohorts (n=181; n=59) were included, and a subgroup (n=21) was longitudinally followed. Chemokine/cytokine responses in immune complex triggered IFN-α activity was studied in healthy donor peripheral blood mononuclear cells (PBMC). Levels of chemokines/cytokines and galectin-9 were measured by immunoassays. Gene expression was quantified by qPCR.ResultsThe IGS was significantly (p&lt;0.01) correlated with galectin-9 (rho=0.54) and CXCL10 (rho=0.37) levels whereas serum IFN-α correlated with galectin-9 (rho=0.36), CXCL10 (rho=0.39), CCL19 (rho=0.26) and CCL2 (rho=0.19). The strongest correlation was observed between galectin-9 and TNF (rho=0.56). IFN-α and disease activity (SLEDAI-2K) were correlated (rho=0.20) at cross-sectional analysis, but no significant associations were found between SLEDAI-2K and galectin-9 or chemokines. Several inflammatory mediators increased at disease exacerbation although CCL19, CXCL11, CXCL10, IL-10 and IL-1 receptor antagonist were most pronounced. Immune complex-stimulation of PBMC increased the production of CCL2, CXCL8 and TNF.ConclusionGalectin-9 and CXCL10 were associated with type I IFN in SLE but correlated stronger with TNF. None of the investigated biomarkers showed a convincing association with disease activity, although CXCL10 and CCL19 performed best in this regard.


Sign in / Sign up

Export Citation Format

Share Document