scholarly journals Bovine γδ T Cells Are a Major Regulatory T Cell Subset

2014 ◽  
Vol 193 (1) ◽  
pp. 208-222 ◽  
Author(s):  
Efrain Guzman ◽  
Jayne Hope ◽  
Geraldine Taylor ◽  
Adrian L. Smith ◽  
Carolina Cubillos-Zapata ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2009 ◽  
Vol 88 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jillian E. Wohler ◽  
Sherry S. Smith ◽  
Scott R. Barnum

2006 ◽  
Vol 7 (1-2) ◽  
pp. 81-96 ◽  
Author(s):  
Wasin Charerntantanakul ◽  
James A. Roth

The present review concentrates on the biological aspects of porcine T lymphocytes. Their ontogeny, subpopulations, localization and trafficking, and responses to pathogens are reviewed. The development of porcine T cells begins in the liver during the first trimester of fetal life and continues in the thymus from the second trimester until after birth. Porcine T cells are divided into two lineages, based on their possession of the [@@@]\rmalpha [@@@]β or γδ T-cell receptor. Porcine [@@@]\rmalpha [@@@]β T cells recognize antigens in a major histocompatibility complex (MHC)-restricted manner, whereas the γδ T cells recognize antigens in a MHC non-restricted fashion. The CD4+CD8−and CD4+CD8loT cell subsets of [@@@]\rmalpha [@@@]β T cells recognize antigens presented in MHC class II molecules, while the CD4−CD8+T cell subset recognizes antigens presented in MHC class I molecules. Porcine [@@@]\rmalpha [@@@]β T cells localize mainly in lymphoid tissues, whereas γδ T cells predominate in the blood and intestinal epithelium of pigs. Porcine CD8+[@@@]\rmalpha [@@@]β T cells are a prominent T-cell subset during antiviral responses, while porcine CD4+[@@@]\rmalpha [@@@]β T cell responses predominantly occur in bacterial and parasitic infections. Porcine γδ T cell responses have been reported in only a few infections. Porcine T cell responses are suppressed by some viruses and bacteria. The mechanisms of T cell suppression are not entirely known but reportedly include the killing of T cells, the inhibition of T cell activation and proliferation, the inhibition of antiviral cytokine production, and the induction of immunosuppressive cytokines.


2016 ◽  
Vol 197 (12) ◽  
pp. 4584-4592 ◽  
Author(s):  
Mohammad Kadivar ◽  
Julia Petersson ◽  
Lena Svensson ◽  
Jan Marsal

Immunotherapy ◽  
2009 ◽  
Vol 1 (4) ◽  
pp. 663-678
Author(s):  
Shubhada Chiplunkar ◽  
Swati Dhar ◽  
Daniela Wesch ◽  
Dieter Kabelitz

γδ T lymphocytes are a distinct T-cell subset that display unique features with respect to T-cell receptor (TCR) gene usage, tissue tropism and antigen recognition. Phosphoantigens contributed by a dysregulated mevalonate pathway or the bacterial nonmevalonate pathway and aminobisphosphonates are capable of activating Vγ9Vδ2 T cells. With the aid of synthetic phosphoantigens, large-scale expansion of γδ T cells and their adoptive transfer into human hosts is now possible. The present review summarizes triumphs and tribulations of clinical trials using γδ T-cell immunotherapy. Adoptive transfer of phosphoantigen-activated γδ T cells or coadministration with aminobisphosphonates/cytokines/monoclonal antibodies appear to be promising approaches for cancer immunotherapy. It can be predicted that a comprehensive understanding of the molecular interactions of this unique T-cell subset with other key immune regulators (dendritic cells and regulatory T cells) will provide an impetus to bring this modality of treatment from bench to bedside.


2010 ◽  
Vol 184 (9) ◽  
pp. 4620-4624 ◽  
Author(s):  
Roopali Gandhi ◽  
Mauricio F. Farez ◽  
Yue Wang ◽  
Deneen Kozoriz ◽  
Francisco J. Quintana ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 232.1-233
Author(s):  
M. Nyirenda ◽  
I. Mcinnes ◽  
C. Goodyear

Background:Aberrant T cell responses are key in driving autoimmunity and are commonly associated with rheumatoid arthritis (RA). Unravelling pathways of importance in therapeutic partial response and failure is of critical importance, as this will potentially provide new insights into key drivers of immune-mediated pathogenesis.Objectives:To delineate disease-relevant T cell subsets in RA and assess their potential to act as cellular markers amenable to precision medicine approaches, particularly in the context of therapeutic partial or non-response.Methods:FACS-based immunophenotyping and ex-vivo functional response profiles of CD4+CD161+CCR2+CCR5+T cells were performed in peripheral blood mononuclear cells (PBMC) obtained from patients with RA and healthy controls, using previously characterised methodologies. RA patients fulfilled the 2010 ACR/EULAR criteria for RA. All samples were obtained after written consent, with the appropriate ethical approvals in place.Results:RA patients harboured a higher frequency of CCR2+CCR5+cells within the CD4+CD161+T cell compartment compared with healthy controls. In RA patients this T cell subset had a higher proportion of cells that secrete pro-inflammatory cytokines such as IL-17A, GM-CSF, IFN-γ, and TNF. Importantly, the CD4+CD161+CCR2+CCR5+T cell subset was significantly increased in DMARD non-responders compared to both responders and healthy controls. Moreover, in DMARD non-responders, these cells had a propensity to express increased proportions of pro-inflammatory cytokines. Notably, there was also a significant increase in the ratio of effector: regulatory T cell (Teff: Treg) compared to both responders and healthy controls. In addition, the CD4+CD161+CCR2+CCR5+T cell subset was less responsive to suppression by Tregs. In further support of a role for this T cell population in disease pathogenesis, the frequency of CD4+CD161+CCR2+CCR5+T cells significantly correlated with disease activity, as measured by the DAS28 (R2= 0.65; p = 0.003; n=11).Conclusion:Combined, our findings suggest that the CD4+CD161+CCR2+CCR5+T cell subset represents a substantially abnormal T cell subset in RA, exhibiting exaggerated pro-inflammatory responses, numerical abundance relative to Tregs, and resistant to regulation by Tregs. The CD4+CD161+CCR2+CCR5+T cell subset appears to be a marker of therapeutic response status in RA, via its contribution to disease pathology and highlights this subset as a potential therapeutic target in RA.References:[1]McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis.N Engl J Med. 2011;365(23):2205-19.[2]Mexhitaj I, Nyirenda MH, Li R, O’Mahony J, Rezk A, Rozenberg A,et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis.Brain. 2019;142(3):617-32.[3]Cosmi L, Cimaz R, Maggi L, Santarlasci V, Capone M, Borriello F,et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+T cells in the synovial fluid of patients with juvenile idiopathic arthritis.Arthritis Rheum. 2011;63(8):2504-15.Disclosure of Interests:Mukanthu Nyirenda: None declared, Iain McInnes Grant/research support from: Bristol-Myers Squibb, Celgene, Eli Lilly and Company, Janssen, and UCB, Consultant of: AbbVie, Bristol-Myers Squibb, Celgene, Eli Lilly and Company, Gilead, Janssen, Novartis, Pfizer, and UCB, Carl Goodyear: None declared


Sign in / Sign up

Export Citation Format

Share Document