scholarly journals Examination of CD8+T Cell Function in Humans Using MHC Class I Tetramers: Similar Cytotoxicity but Variable Proliferation and Cytokine Production Among Different Clonal CD8+T Cells Specific to a Single Viral Epitope

2000 ◽  
Vol 165 (11) ◽  
pp. 6214-6220 ◽  
Author(s):  
Dong-Gyun Lim ◽  
Katarzyna Bieganowska Bourcier ◽  
Gordon J. Freeman ◽  
David A. Hafler
2007 ◽  
Vol 81 (6) ◽  
pp. 2940-2949 ◽  
Author(s):  
Adam J. Gehring ◽  
Dianxing Sun ◽  
Patrick T. F. Kennedy ◽  
Esther Nolte-'t Hoen ◽  
Seng Gee Lim ◽  
...  

ABSTRACT CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 840-840
Author(s):  
David M Woods ◽  
Karrune V. Woan ◽  
Eva Sahakian ◽  
John Powers ◽  
Fengdong Cheng ◽  
...  

Abstract Abstract 840 T-cells are an essential component of immune mediated tumor rejection. Adoptive transfer of T-cells results in a durable anti-tumor response in some patients with hematological malignancies. To further improve the efficacy of T-cell adoptive transfers, a better understanding of the regulatory checkpoints of these cells is needed. Here we show that HDAC11 is a negative regulator of CD8+ T-cell function, thus representing a potential target in adoptive immunotherapy. HDACs are a group of enzymes initially known for their role in deacetylating histones, thereby condensing chromatin structure and repressing gene expression. The known roles of HDACs as epigenetic regulators have recently expanded to include more complex regulatory functions including interactions with non-histone targets. HDAC11 is the most recently identified member of the HDAC family, and is highly expressed in brain, testis and T-cells. Recently, our group reported HDAC11 as a regulator of IL-10 production in antigen presenting cells. To determine the role of HDAC11 in T-cell biology, T-cells from HDAC11 knock out (HDAC11KO) mice were compared to wild-type T-cells in number, function and phenotype. HDAC11KO T-cells had no differences in absolute number or percentages of CD4+ or CD8+ lymphocytes. However CD8+ T-cells were hyper-proliferative upon CD3/CD28 stimulation and produced significantly higher levels of the pro-inflammatory, Tc1 cytokines IL-2, INF-γ, and TNF-α. However, no significant increases in the production of the Tc2 cytokines IL-4, IL-6 or IL-10 were seen. Further investigation of phenotypic differences also revealed that HDAC11KO mice have a larger percentage of central memory CD8+ T-cells. Additionally, HDAC11KO CD8+ T-cells express higher levels of the transcription factor Eomes, a known contributor to central memory cell formation as well as a controller of granzyme B and perforin production in CD8+ T-cells. This Tc1 and central memory-like phenotype translated to delayed tumor progression and survival in vivo in C1498 AML bearing mice treated with adoptively transferred HDAC11KO T-cells, as compared with wild type T-cells. Collectively, we have demonstrated HDAC11 as a negative regulator of CD8+ T-cell function, and a novel potential target to augment the efficacy of adoptive T-cell tumor immunotherapy. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 36 ◽  
pp. S17-S18
Author(s):  
A.J. Gehring ◽  
P.T.F. Kennedy ◽  
D. Sun ◽  
E. Nolte-'t Hoen ◽  
S. Lim ◽  
...  

2007 ◽  
Vol 204 (9) ◽  
pp. 2023-2030 ◽  
Author(s):  
Ian Galea ◽  
Martine Bernardes-Silva ◽  
Penny A. Forse ◽  
Nico van Rooijen ◽  
Roland S. Liblau ◽  
...  

CD8 T cells are nature's foremost defense in encephalitis and brain tumors. Antigen-specific CD8 T cells need to enter the brain to exert their beneficial effects. On the other hand, traffic of CD8 T cells specific for neural antigen may trigger autoimmune diseases like multiple sclerosis. T cell traffic into the central nervous system is thought to occur when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen specificity, but studies have focused on CD4 T cells. Here, we show that selective traffic of antigen-specific CD8 T cells into the brain occurs in vivo and is dependent on luminal expression of major histocompatibility complex (MHC) class I by cerebral endothelium. After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 T cells only infiltrated the brain when and where their cognate antigen was present. This was independent of antigen presentation by perivascular macrophages. Marked reduction of antigen-specific CD8 T cell infiltration was observed after intravenous injection of blocking anti–MHC class I antibody. These results expose a hitherto unappreciated route by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implications for a variety of diseases in which antigen-specific CD8 T cell traffic into the brain is a beneficial or deleterious feature.


2020 ◽  
Vol 222 (9) ◽  
pp. 1540-1549
Author(s):  
Bruktawit A Goshu ◽  
Hui Chen ◽  
Maha Moussa ◽  
Jie Cheng ◽  
Marta Catalfamo

Abstract In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1−/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.


2006 ◽  
Vol 80 (13) ◽  
pp. 6333-6338 ◽  
Author(s):  
Vijay Panchanathan ◽  
Geeta Chaudhri ◽  
Gunasegaran Karupiah

ABSTRACT Renewed interest in smallpox and the need for safer vaccines have highlighted our lack of understanding of the requirements for protective immunity. Since smallpox has been eradicated, surrogate animal models of closely related orthopoxviruses, such as ectromelia virus, have been used to establish critical roles for CD8 T cells in the control of primary infection. To study the requirements for protection against secondary infection, we have used a prime-challenge regime, in which avirulent ectromelia virus was used to prime mice that were then challenged with virulent ectromelia virus. In contrast to primary infection, T cells are not required for recovery from secondary infection, since gene knockout mice deficient in CD8 T-cell function and wild-type mice acutely depleted of CD4, CD8, or both subsets were fully protected. Protection correlated with effective virus control and generation of neutralizing antibody. Notably, primed mice that lacked B cells, major histocompatibility complex class II, or CD40 succumbed to secondary infection. Thus, antibody is essential, but CD4 or CD8 T cells are not required for recovery from secondary poxvirus infection.


1993 ◽  
Vol 178 (3) ◽  
pp. 889-899 ◽  
Author(s):  
C McMenamin ◽  
P G Holt

The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I-restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA-specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I-restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces.


2004 ◽  
Vol 199 (10) ◽  
pp. 1409-1420 ◽  
Author(s):  
Steven P. Lee ◽  
Jill M. Brooks ◽  
Hatim Al-Jarrah ◽  
Wendy A. Thomas ◽  
Tracey A. Haigh ◽  
...  

The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I–restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon γ release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter–dependent pathway. Furthermore, LCL recognition by such CD8+ T cells, although slightly lower than seen with paired lines expressing a GAr-deleted EBNA1 protein, leads to strong and specific inhibition of LCL outgrowth in vitro. Endogenously expressed EBNA1 is therefore accessible to the MHC class I pathway despite GAr-mediated stabilization of the mature protein. We infer that EBNA1-specific CD8+ T cells do play a role in control of EBV infection in vivo and might be exploitable in the control of EBV+ malignancies.


Sign in / Sign up

Export Citation Format

Share Document