scholarly journals B Cell Receptor Cross-Linking Triggers a Caspase-8- Dependent Apoptotic Pathway That Is Independent of the Death Effector Domain of Fas-Associated Death Domain Protein

2001 ◽  
Vol 167 (2) ◽  
pp. 733-740 ◽  
Author(s):  
Laurence Besnault ◽  
Nicolas Schrantz ◽  
Marie Thérèse Auffredou ◽  
Gérald Leca ◽  
Marie Françoise Bourgeade ◽  
...  
2001 ◽  
Vol 12 (10) ◽  
pp. 3139-3151 ◽  
Author(s):  
Nicolas Schrantz ◽  
Marie-Françoise Bourgeade ◽  
Shahul Mouhamad ◽  
Gérald Leca ◽  
Surendra Sharma ◽  
...  

On binding to its receptor, transforming growth factor β (TGFβ) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFβ-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFβ-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFβ-treated cells. TGFβ induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFβ induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFβ-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFβ-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFβ-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFβ induced an apoptotic pathway via FADD-independent activation of caspase-8.


2004 ◽  
Vol 28 (11) ◽  
pp. 1197-1202 ◽  
Author(s):  
Michelle J. Holder ◽  
Anita Chamba ◽  
Debbie L. Hardie ◽  
Julie P. Deans ◽  
John Gordon

Immunology ◽  
2017 ◽  
Vol 153 (2) ◽  
pp. 214-224 ◽  
Author(s):  
Anne Kolenbrander ◽  
Bastian Grewe ◽  
David Nemazee ◽  
Klaus Überla ◽  
Vladimir Temchura

Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6143-6151 ◽  
Author(s):  
Dhohyung Kim ◽  
Devra Huey ◽  
Michael Oglesbee ◽  
Stefan Niewiesk

AbstractThe inhibition of vaccination by maternal antibodies is a widely observed phenomenon in human and veterinary medicine. Maternal antibodies are known to suppress the B-cell response. This is similar to antibody feedback mechanism studies where passively transferred antibody inhibits the B-cell response against particulate antigens because of epitope masking. In the absence of experimental data addressing the mechanism underlying inhibition by maternal antibodies, it has been suggested that epitope masking explains the inhibition by maternal antibodies, too. Here we report that in the cotton rat model of measles virus (MV) vaccination passively transferred MV-specific immunoglobulin G inhibit B-cell responses through cross-linking of the B-cell receptor with FcγRIIB. The extent of inhibition increases with the number of antibodies engaging FcγRIIB and depends on the Fc region of antibody and its isotype. This inhibition can be partially overcome by injection of MV-specific monoclonal IgM antibody. IgM stimulates the B-cell directly through cross-linking the B-cell receptor via complement protein 3d and antigen to the complement receptor 2 signaling complex. These data demonstrate that maternal antibodies inhibit B-cell responses by interaction with the inhibitory/regulatory FcγRIIB receptor and not through epitope masking.


Immunology ◽  
2005 ◽  
Vol 115 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Jutta Horejs-Hoeck ◽  
Andrea Hren ◽  
Geert C. Mudde ◽  
Maximilian Woisetschlager

mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Yan Chen ◽  
Devin N. Fachko ◽  
Nikita S. Ivanov ◽  
Rebecca L. Skalsky

ABSTRACT Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.


2001 ◽  
Vol 276 (17) ◽  
pp. 13606-13614 ◽  
Author(s):  
Bart-Jan Kroesen ◽  
Benjamin Pettus ◽  
Chiara Luberto ◽  
Mark Busman ◽  
Hannie Sietsma ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1567-1567
Author(s):  
Nicola J Weston-Bell ◽  
Gavin Babbage ◽  
Francesco Forconi ◽  
Hanneke C. Kluin-Nelemans ◽  
Surinder S Sahota

Abstract Abstract 1567 The B-cell receptor (BCR) is critical to survival of normal B-cells, and regulates key aspects of cellular behavior. Of these, response to antigen determines pathways of normal B-cell maturation, including isotype switch events that occur by deletional class switch recombination (CSR), an irrevocable event, to yield IgG/A memory B-cells. Less frequently, CSR via a cryptic site generates IgD+ B-cells whereas IgM+IgD+ antigen experienced B-cells synthesize each isotype by an alternative transcript splicing mechanism. The role of the BCR in survival of malignant B-cells however is less well defined, in particular in response to antigen. Intriguingly, in Hairy cell leukemia (HCL), BCR assembly occurs with multiple surface immunoglobulin (sIg) isotypes (mult-HCL), many co-expressed on individual hairy cells (HCs) in an otherwise monoclonal tumor. Multiple isotypes appear to exclude deletional CSR events, and suggests a RNA processing mechanism of molecular assembly. This phenotype is rare even amongst malignant B-cells, and raises the question of the functional relevance of individual variant isotypes. It also potentially presents a model to dissect roles of multiple isotypes on single B-cells. To examine this, we investigated the BCR in CD19+CD11c+CD103+ mult-HCL cases (n=10), in which 2–4 differing sIg isotypes were present on most HCs, with single or, in 3 cases, dual sIgL expression. In all cases, IGHV genes were mutated, and confirmed monoclonality. Phenotype revealed 2 distinct subsets by sIg isotype co-expression, IgD+ve and IgD-ve. Using Ca2+ flux and ERK phosphorylation assays after cross-linking with specific anti-sIg antibodies, we observed a functional BCR in all mult-HCL examined, in both subsets (10/10 cases Ca2+, 6/6 cases ERK). However, striking differences emerged between the two subsets. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, with flux also evident via >1 sIgH isotype. In marked contrast, in sIgD-ve mult-HCL Ca2+ flux was restricted to a single sIgH isotype, but not via IgM. Flux signals in this subset were transient. In most cases only a single sIgL transduced flux. We next evaluated BCR endocytosis after cross-linking individual isotypes and IgL. In 2 sIgD+ve cases, anti-IgD and anti-Igλ stimulation led to endocytosis of both sIgD and sIgλ, and in 1 case, where examined, anti-IgM stimulation endocytosed both sIgM and sIgλ. In 3 sIgD-ve cases, functional sIgH and sIgL induced endocytosis of the stimulated isotype, but again sIgM was dysfunctional, remaining immobilized on the cell surface. Ca2+ flux through endocytosed isotypes was correspondingly either significantly reduced or ablated in both subsets. In HCs, BCR endocytosis is clearly dependent on functional isotypes and IgL, and parallels events in normal B-cells. Lastly, we examined downstream effects of BCR signalling on cell viability, using soluble (sAb) and bound (bAb) anti-sIg antibodies. In a single IgD+ve mult-HCL case, both sAb and bAb anti-IgM yielded a significant level of apoptosis compared to control antibodies, whereas anti-IgD sAb resulted in no appreciable difference to level of spontaneous apoptosis, suggesting a disengagement of signals from this pathway. This disengagement was also observed in a separate HCL case expressing only IgD, and not in the mult-HCL cohort initially selected, where anti-IgD signals again did not increase levels of apoptosis. In IgD-ve mult-HCL (n=4), sAb and bAb specific cross-linking of IgG/A triggered significant apoptosis. These data demonstrate, for the first time, that mult-HCL retains a functional responsiveness via the BCR, suggesting an absence of anergic effects that may follow chronic antigen exposure in-vivo to self-antigen. Signals via sIgM/G/A isotypes, where functional, induce apoptosis in mult-HCL, whereas sIgD opposes such effects. Despite an apparently unique molecular mechanism of IgD expression in mult-HCL, this isotype appears to be hardwired in B-cells to mediate responses that differ from IgM. The persistent flux observed here indicates a more sustained and robust IgD signaling cascade, as also observed in B-cell models. These data reveal distinctive and opposing effects of individual isotypes on BCR mediated behavior in mult-HCL. While apoptotic responses appear to negate a role for antigen in tumor drive in-vivo, potential antigen engagement via IgD, if dominant leaves this question open. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document