scholarly journals p38-mediated Regulation of an Fas-associated Death Domain Protein-independent Pathway Leading to Caspase-8 Activation during TGFβ-induced Apoptosis in Human Burkitt Lymphoma B Cells BL41

2001 ◽  
Vol 12 (10) ◽  
pp. 3139-3151 ◽  
Author(s):  
Nicolas Schrantz ◽  
Marie-Françoise Bourgeade ◽  
Shahul Mouhamad ◽  
Gérald Leca ◽  
Surendra Sharma ◽  
...  

On binding to its receptor, transforming growth factor β (TGFβ) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFβ-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFβ-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFβ-treated cells. TGFβ induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFβ induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFβ-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFβ-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFβ-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFβ induced an apoptotic pathway via FADD-independent activation of caspase-8.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Wang ◽  
Chunhui Xia ◽  
Wei Chen ◽  
Yuhang Chen ◽  
Yiyi Wang ◽  
...  

Photodynamic therapy (PDT) is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc- (TαPcZn-) mediated PDT (TαPcZn-PDT) inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE) staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI) double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.


2011 ◽  
pp. 166-176
Author(s):  
María Elena Maldonado-Celis ◽  
Souad Bousserouel ◽  
Francine Gossé ◽  
Annelise Lobstein ◽  
Francis Raul

Introduction: We investigated the effects of apple procyanidins (Pcy), oligomers of catechins and epicatechins on Fas receptor expression and function in human colon adenocarcinoma cells (SW480) and in their derived metastatic cells (SW620). Methods: Pcy were characterized by reverse-phase HPLC. Cell death, Fas proteins, DNA fragmentation, and mitochondrial membrane potential were analyzed by flow cytometry. Fas mRNA was analyzed by RT-PCR in real time. Results: Pcy up-regulated the expression of the Fas receptor at the cell surface of both cell lines but activated Fas gene transcription only in SW620 cells. In SW480 cells, Pcy combined with Fas agonist CH-11 enhanced Fas-mediated apoptosis involving the loss of mitochondrial membrane potential and DNA fragmentation, which were abrogated by the antagonist antibody of Fas receptor, the anti-Fas ZB4. On the contrary, in SW620 cells, CH-11 was not able to enhance Pcy-triggered apoptosis indicating that Fas receptor-mediated apoptosis was not activated in these cells despite an up-regulation of Fas receptor gene expression. However, it was observed in SW620 cells that Pcy activated the Fas receptor-mediated apoptotic pathway after a specific blockage of TRAIL-death DR4/DR5 receptors. Conclusions: The present data showed that Pcy were able to activate the Fas receptor apoptotic pathway in SW480 cells and favored a cross-talk between TRAIL and Fas receptors in SW620 cells because specific blocking of TRAIL death receptors favored activation of the Fas receptor-mediated apoptosis. These important data may allow the emergence of new therapeutic protocols targeting death receptors against resistant metastatic cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2098-2098
Author(s):  
David M. Lucas ◽  
Syed-Rehan A. Hussain ◽  
Amy J. Johnson ◽  
Lisa L. Smith ◽  
Amy J. Wagner ◽  
...  

Abstract We have noted impressive activity of the cyclin-dependent kinase inhibitor flavopiridol in advanced-stage CLL patients, including those with a deletion of chromosome 17p13. Using a novel, effective schedule of flavopiridol, substantial and sometimes dramatic evidence of tumor cell death is observed as early as 4–6 hours. This is accompanied by hyperkalemia, hyperphosphatemia, hypocalcemia, and dramatic elevation in LDH consistent with acute tumor lysis syndrome. Studies by several groups including our own have demonstrated that Mcl-1 protein and mRNA is down-regulated with flavopiridol. Mcl-1 is an important protein that contributes to mitochondrial membrane stability. We have therefore sought to determine the role of mitochondria disruption in the mechanism of action of flavopiridol. By flow cytometry using the voltage-sensitive dye JC-1, loss of mitochondrial membrane potential was detected in flavopiridol-treated whole blood as early as five hours, prior to the onset of annexin-V or propidium iodide staining. This is in contrast to in vitro studies using human serum, in which mitochondrial depolarization and annexin-V staining occurred simultaneously. In isolated CLL cells treated with flavopiridol in vitro, loss of mitochondrial membrane potential was not affected by inhibitors of caspases 8 or 9 or by the broad caspase inhibitor Z-VAD-fmk, although apoptosis was effectively blocked by Z-VAD-fmk and caspase-8 inhibitor, and to a lesser extent, caspase-9 inhibitor. Flavopiridol was also able to effectively induce apoptosis and mitochondrial membrane depolarization in Jurkat cell lines deficient in caspase-8 or its adapter protein FADD. Additionally, lymphoid cells overexpressing Bcl-2 are resistant to flavopiridol-mediated apoptosis relative to the vector control. This suggests there is not direct binding of flavopiridol or its metabolites to APAF-1 (cytosolic adapter protein) and apoptosome assembly, as this process is insensitive to Bcl-2 family proteins. Further mechanistic studies were undertaken using isolated liver mitochondria. While the electron transport system was not uncoupled in this system, potential mechanisms of mitochondrial injury in leukemic cells from CLL patients are currently under exploration. Taken together, these observations suggest that mitochondrial perturbation contributes significantly to the death process induced by flavopiridol. Further studies to identify the mechanism of mitochondrial perturbation will be essential to understanding flavopiridol’s mechanism of action and for predicting patients at risk for acute tumor lysis syndrome. (Support for this work was provided by the Samuel Waxman Foundation and the Leukemia & Lymphoma Society.)


2004 ◽  
Vol 24 (15) ◽  
pp. 6592-6607 ◽  
Author(s):  
Dhyan Chandra ◽  
Grace Choy ◽  
Xiaodi Deng ◽  
Bobby Bhatia ◽  
Peter Daniel ◽  
...  

ABSTRACT It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca2+-dependent mechanism.


2020 ◽  
Vol 38 (4) ◽  
pp. 957-966
Author(s):  
Agnieszka Wnuk ◽  
Karolina Przepiórska ◽  
Joanna Rzemieniec ◽  
Bernadeta Pietrzak ◽  
Małgorzata Kajta

Abstract Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory decline, the presence of Aβ plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease. In this model, the treatment of mouse neocortical neurons with Aβ (5 and 10 μM) induced apoptosis (loss of mitochondrial membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of exposure, PaPE-1 inhibited Aβ-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis. Because PaPE-1 downregulated Aβ-induced Fas/FAS expression but upregulated that of Aβ-induced FasL, the role of PaPE-1 in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aβ-induced loss of mitochondrial membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the selective targeting of non-nuclear ERs with PaPE-1.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3700-3700
Author(s):  
Jeannine Winkler ◽  
Sabine Kroiss ◽  
Margaret L. Rand ◽  
Markus Schmugge ◽  
Oliver Speer

Abstract Abstract 3700 Apoptotic-like processes in platelets are similar to those observed during apoptosis in the cytoplasm of nucleated cells: activation of caspase-8, caspase-9, and caspase-3, loss of mitochondrial inner membrane potential, and externalization of phosphatidylserine (PS) (Leytin et al, Br J Haematol 2006; Lopez et al, J Thromb Haemost 2009). We recently showed that platelets in pediatric primary immune thrombocytopenia (ITP) have activated caspase-3 (aCASP3) and externalized PS, both of which were reduced after IVIg administration (Speer et al, Blood 2008;112: 3417). To gain a more complete understanding of the apoptosis that occurs in ITP platelets, in the present study, we investigated whether caspase-8 and caspase-9 are also activated in platelets from children with ITP, and examined whether the increase in platelet count in response to IVIg is associated with a decrease in activated caspase-8 (aCASP8) and -9 (aCASP9) in platelets, as was observed for aCASP3. In addition, we measured the mitochondrial membrane potential in platelets before and after IVIg therapy. Children with primary ITP were enrolled in this prospective study. Severity of bleeding symptoms was assessed according to a pediatric bleeding score for ITP at the time of diagnosis. Blood samples were obtained at the time of diagnosis and after IVIg therapy for measurement of platelet count and for flow cytometric analyses of platelet apoptotic-like events. In citrated platelet-rich plasma, platelets were identified as CD42 positive events; aCASP8 and aCASP9 were measured as % platelets with bound FITC-fluorescent-labeled inhibitors of activated caspases; and mitochondrial membrane potential was measured as mean fluorescence intensity of the membrane potential sensitive fluorescent tetramethylrhodamine ethyl ester (TMRE). All patients (median age 5.4 yrs, n = 8) presented with typical symptoms of acute ITP with a bleeding score of 2 – 3 and had platelet counts < 20×109/L. Results from ITP patients were compared with 2 control groups, healthy children (platelet counts: 266–348 × 109/L, median age 6.8 yrs, n = 7) and children with thrombocytopenia as a result of chemotherapy for malignancies (cTP) (platelet counts: 3–51 × 109/L, median age 10.2 yrs, n = 7). ITP patients had significantly higher proportions of platelets with aCASP8 (17.5±5.1%) and aCASP9 (16.9±5.8%) compared with both healthy children (aCASP8 1.0±0.3%; aCASP9 1.1±0.3%) and children with cTP, (aCASP8 2.2±0.4%; aCASP9 1.9±0.4%) (p<0.01-0.05). In contrast, a loss of mitochondrial membrane potential was not observed in platelets from ITP patients at baseline, in healthy controls, or cTP. All ITP patients were treated with a maximum of 3 doses of IVIg (0.4 – 0.8 g/kg/dose) and showed a rise in platelet counts to > 20 × 109/L and amelioration of bleeding symptoms by 24 – 72 hours after IVIg administration. Concomitantly, the fractions of platelets with aCASP8 and aCASP9, decreased towards control values (ITP patients after IVIg: aCASP8 7.8±5.3%; aCASP9 6.9±2.1; p=0.5 for both compared to controls). Again no change in mitochondrial potential was observed after IVIg. In summary, we have demonstrated enhancement of the platelet apoptotic-like processes of aCASP8 and aCASP9 specifically in pediatric primary ITP, which were not observed in cTP. However, the platelet mitochondrial membrane potential was unchanged in ITP (before and after IVIg) and did not differ compared cTP and healthy children. Consistent with primary ITP, the patients' platelet counts were low and increased with IVIg administration. In parallel, IVIg led to a decrease of aCASP8 and aCASP9 in the patients' platelets. Together with our previously reported results (Speer et al, Blood 2008;112: 3417), we show that apoptotic events in platelets such as activation of caspases-8, -9, and -3 and PS exposure are increased specifically in ITP but not in cTP, and are decreased after IVIg treatment. As we detected no loss of the mitochondrial membrane potential in platelets from ITP patients, it may be that apoptotic processes in these platelets are not activated by mitochondrial signaling, but rather via an extrinsic signaling cascade including caspase-8, leading to the activation of caspase-3 and caspase-9. However, the complete signaling pathway leading to caspase-8 activation in platelets of pediatric ITP remains to be elucidated. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 167 (2) ◽  
pp. 733-740 ◽  
Author(s):  
Laurence Besnault ◽  
Nicolas Schrantz ◽  
Marie Thérèse Auffredou ◽  
Gérald Leca ◽  
Marie Françoise Bourgeade ◽  
...  

2004 ◽  
Vol 72 (5) ◽  
pp. 2590-2597 ◽  
Author(s):  
Kazimierz Weęglarczyk ◽  
Jarosław Baran ◽  
Marek Zembala ◽  
Juliusz Pryjma

ABSTRACT Human peripheral blood monocytes become apoptotic following phagocytosis and killing of Staphylococcus aureus. Although this type of monocyte apoptosis is known to be initiated by Fas-Fas ligand (FasL) interactions, the downstream signaling pathway has not been determined. In this work the involvement of mitochondria and the kinetics of caspase-8 and caspase-3 activation after phagocytosis of S. aureus were studied. Caspase-8 activity was measured in cell lysates by using the fluorogenic substrate Ac-IETD-AFC. Active caspase-3 levels and mitochondrial membrane potential (Δψm) were measured in whole cells by flow cytometry using monoclonal antibodies reacting with activated caspase-3 and chloromethyl-X-rosamine, respectively. The results show that caspase-8 was activated shortly after phagocytosis of bacteria. Caspase-8 activation was followed by progressive disruption of Δψm, which is associated with the production of reactive oxygen intermediates. The irreversible caspase-8 inhibitor zIETD-FMK prevented the disruption of Δψm and the release of cytochrome c from S. aureus-exposed monocytes. Caspase-3 activation occurred following disruption of Δψm. These results strongly suggest that apoptosis of monocytes that have phagocytosed and killed S. aureus is driven by the Fas-FasL-initiated pathway, which is typical for type II cells.


2004 ◽  
Vol 24 (7) ◽  
pp. 728-743 ◽  
Author(s):  
Zhao Zhong Chong ◽  
Shi-Hua Lin ◽  
Kenneth Maiese

Nicotinamide, a ß-nicotinamide adenine dinucleotide (NAD+) precursor and an essential nutrient for cell growth and function, may offer critical insights into the specific cellular mechanisms that determine neuronal survival, since this agent significantly impacts upon both neuronal and vascular integrity in the central nervous system. The authors show that nicotinamide provides broad, but concentration-specific, protection against apoptotic genomic DNA fragmentation and membrane phosphatidylserine exposure during oxidative stress to secure cellular integrity and prevent phagocytic cellular demise. Activation of the protein kinase B (Akt1) pathway is a necessary requirement for nicotinamide protection, because transfection of primary hippocampal neurons with a plasmid encoding a kinase-deficient dominant-negative Akt1 as well as pharmacologic inhibition of phosphatidylinositol-3-kinase phosphorylation of Akt1 eliminates cytoprotection by nicotinamide. Nicotinamide fosters neuronal survival through a series of intimately associated pathways. At one level, nicotinamide directly modulates mitochondrial membrane potential and pore formation to prevent cytochrome c release and caspase-3–and 9–like activities through mechanisms that are independent of the apoptotic protease activating factor-1. At a second level, nicotinamide maintains an inhibitory phosphorylation of the forkhead transcription factor FOXO3a at the regulatory sites of Thr32 and Ser253 and governs a unique regulatory loop that prevents the degradation of phosphorylated FOXO3a by caspase-3. Their work elucidates some of the unique neuroprotective pathways used by the essential cellular nutrient nicotinamide that may direct future therapeutic approaches for neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document