scholarly journals The Kinetics of In Vivo Priming of CD4 and CD8 T Cells by Dendritic/Tumor Fusion Cells in MUC1-Transgenic Mice

2002 ◽  
Vol 168 (5) ◽  
pp. 2111-2117 ◽  
Author(s):  
Shigeo Koido ◽  
Yasuhiro Tanaka ◽  
Dongshu Chen ◽  
Donald Kufe ◽  
Jianlin Gong
PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e77746 ◽  
Author(s):  
Francesco Nicoli ◽  
Valentina Finessi ◽  
Mariaconcetta Sicurella ◽  
Lara Rizzotto ◽  
Eleonora Gallerani ◽  
...  

2008 ◽  
Vol 180 (11) ◽  
pp. 7230-7239 ◽  
Author(s):  
Elisabetta Parretta ◽  
Giuliana Cassese ◽  
Angela Santoni ◽  
John Guardiola ◽  
Antonia Vecchio ◽  
...  

2000 ◽  
Vol 191 (1) ◽  
pp. 157-170 ◽  
Author(s):  
Hitoshi Nishimura ◽  
Toshiki Yajima ◽  
Yoshikazu Naiki ◽  
Hironaka Tsunobuchi ◽  
Masayuki Umemura ◽  
...  

At least two types of interleukin (IL)-15 mRNA isoforms are generated by alternative splicing at the 5′ upstream of exon 5 in mice. To elucidate the potential roles of IL-15 isoforms in immune responses in vivo, we constructed two groups of transgenic mice using originally described IL-15 cDNA with a normal exon 5 (normal IL-15 transgenic [Tg] mice) and IL-15 cDNA with an alternative exon 5 (alternative IL-15 Tg mice) under the control of an MHC class I promoter. Normal IL-15 Tg mice constitutionally produced a significant level of IL-15 protein and had markedly increased numbers of memory type (CD44high Ly6C+) of CD8+ T cells in the LN. These mice showed resistance to Salmonella infection accompanied by the enhanced interferon (IFN)-γ production, but depletion of CD8+ T cells exaggerated the bacterial growth, suggesting that the IL-15–dependent CD8+ T cells with a memory phenotype may serve to protect against Salmonella infection in normal IL-15 Tg mice. On the other hand, a large amount of intracellular IL-15 protein was detected but hardly secreted extracellularly in alternative IL-15 Tg mice. Although most of the T cells developed normally in the alternative IL-15 Tg mice, they showed impaired IFN-γ production upon TCR engagement. The alternative IL-15 transgenic mice were susceptible to Salmonella accompanied by impaired production of endogenous IL-15 and IFN-γ. Thus, two groups of IL-15 Tg mice may provide information concerning the different roles of IL-15 isoforms in the immune system in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A749-A749
Author(s):  
Christie Zhang ◽  
Natasha Girgis ◽  
Zohra Merazga ◽  
Steven Hatfield ◽  
Alex Histed ◽  
...  

BackgroundWilms' Tumor 1 (WT1) was ranked as the highest priority antigen for therapeutic targeting in an effort by the National Cancer Institute. Development of novel modalities targeting WT1 provide a significant opportunity to address high unmet medical need in WT1-positive malignancies, including AML, ovarian, endometrial, breast, lung, colorectal and pancreatic cancer. Leveraging the Immuno-STAT platform of targeted IL-2 therapies, and the ongoing development of CUE-101, CUE-102 is being developed as a novel therapeutic fusion protein to selectively activate tumor antigen-specific T cells to treat WT1-expressing cancers. CUE-102 consists of two human leukocyte antigen (HLA) molecules presenting a WT1 peptide, four affinity-attenuated human interleukin-2 (IL-2) molecules, and an effector attenuated human immunoglobulin G (IgG1) Fc domain.MethodsHuman PBMCs were tested to demonstrate cellular activity and specificity of CUE-102, while in vivo activity of CUE-102 was assessed in HLA-A2 transgenic mice. HLA-A2/WT1-specific TCRs were validated and expressed in primary human CD8 T cells. Tetramer staining and flow cytometry identified cell populations and activation markers.ResultsMultiple in vitro assessments demonstrate that CUE-102 selectively activates and expands WT1-specific CD8+ T cells from PBMC of healthy and cancer bearing donors. These CUE-102-expanded CD8+ T cells exhibit polyfunctional and cytotoxic responses upon challenge with WT1-presenting target cells. In addition, significant functional attenuation of the IL-2 components of CUE-102 was shown, similar to preclinical results obtained with CUE-101. In vivo studies in HLA-A2 transgenic mice confirm that CUE-102 elicits and expands polyfunctional WT1-specific CD8+ T cells from naïve and previously immunized mice without significantly altering the frequencies of other immune lineages. The WT1-specific CD8+ T cells expanded in vivo exhibit polyfunctionality in response to peptide-loaded target cells, and selectively kill WT1-presenting target cells in vivo.ConclusionsCUE-102 elicits selective expansion of a WT1-specific population of cytotoxic CD8+ T cells both in vitro and in vivo. These results, together with its similarity to CUE-101, support its anticipated tolerability profile and potential for clinical efficacy in a Phase 1 trial planned to initiate in 2022.Ethics ApprovalAll animal studies followed guidance from the SmartLabs Institutional Animal Care and Use Committee protocol MIL-100 and were performed in compliance with federal guidelines.


1996 ◽  
Vol 184 (6) ◽  
pp. 2141-2152 ◽  
Author(s):  
Maria Pihlgren ◽  
Patrice M. Dubois ◽  
Martine Tomkowiak ◽  
Tove Sjögren ◽  
Jacqueline Marvel

The characteristics of CD8+ T cells responsible for memory responses are still largely unknown. Particularly, it has not been determined whether different activation thresholds distinguish naive from memory CD8+ T cell populations. In most experimental systems, heterogeneous populations of primed CD8+ T cells can be identified in vivo after immunization. These cells differ in terms of cell cycle status, surface phenotype, and/or effector function. This heterogeneity has made it difficult to assess the activation threshold and the relative role of these subpopulations in memory responses. In this study we have used F5 T cell receptor transgenic mice to generate a homogeneous population of primed CD8+ T cells. In the F5 transgenic mice, peptide injection in vivo leads to activation of most peripheral CD8+ T cells. In vivo BrdU labeling has been used to follow primed T cells over time periods spanning several weeks after peptide immunization. Our results show that the majority of primed CD8+ T cells generated in this system are not cycling and express increased levels of CD44 and Ly6C. These cells remain responsive to secondary peptide challenge in vivo as evidenced by short term upregulation of activation markers such as CD69 and CD44. The activation thresholds of naive and primed CD8+ T cells were compared in vitro. We found that CD8+ T cells from primed mice are activated by peptide concentrations 10–50-fold lower than naive mice. In addition, the kinetics of interleukin 2Rα chain upregulation by primed CD8+ T cells differ from naive CD8+ T cells. These primed hyperresponsive CD8+ T cells might play an important role in the memory response.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 50-50
Author(s):  
Gullu Gorgun ◽  
Tobias A.W. Holderried ◽  
Rifca Ledieu ◽  
David Zahrieh ◽  
John G. Gribben

Abstract Deregulation of the TCL1 pathway plays a crucial role in B-CLL pathogenesis and targeted expression of TCL1 results in the development in older mice of a B cell lymphoproliferative disorder resembling human B-CLL. CLL patients develop progressively impaired immunity and gene expression profiling of CD4 and CD8 T cells in B-CLL patients revealed defects in genes regulating critical pathways for T cell effector function. The onset of CLL in TCL1-transgenic mice also results in defects similar to those observed in CLL patients. Therefore, this murine model mimics the impact of CLL on the normal immune system, suggesting this may be an appropriate model to examine in vivo the impact of steps taken to repair T cell defects. In this study we examined whether infusion of CLL cells obtained from older mice induced similar changes in T cells of young mice, providing direct demonstration in vivo of interactions of CLL cells with the host immune system which result in development of immune deficiencies. Global gene expression profiling was performed using the Mouse 430_2 Affymetrix chip on highly purified CD4 and CD8 T cells from 6 non-transgenic mice and 16 TCL1 transgenic mice of different ages and at different stages in disease development and compared to that of cells from 6 TCL1 transgenic mice without CLL injected one week previously with 50 x 106 CLL cells. On unsupervised analysis using DNA-Chip Analyzer CD4 and CD8 T cells of young mice without CLL clustered with non-transgenic mice of different ages, whereas CD4 and CD8 cells from mice with developing or established CLL clustered with the young mice injected with CLL cells. Supervised analysis using Permax identified significant differences in expression for 628 genes (125 genes upregulated and 503 downregulated) in CD4 cells and 620 genes (320 genes upregulated and 300 genes downregulated) in CD8 cells in T cells from CLL bearing mice and CLL cell injected mice compared to non-transgenic mice and non-tumor bearing TCL1 mice. Comparison of pathways perturbed in the mice using GenMAPP finder compared to that observed in our previous studies in patients with CLL demonstrates similar alteration in many pathways, including regulation of cell proliferation and cell cycle control, cell differentiation, cytoskeleton formation, intracellular transportation and vesicle formation and transport. Examining these pathways functionally, we observed significantly decreased T cell proliferation, cytotoxicity and helper T cell function, increased numbers of CD4+CD25+CTLA4+ regulatory T cells and increased IL-4 amd IL-13 and decreased IL-12, IFNγ, sTNFRI, sTNFRII in CD4 cells and decreased IL-12p40, TIMP1 and TIMP2 in CD8 cells in both CLL bearing mice or mice injected with CLL cells compared to mice without CLL. These similar findings in human and murine CLL are in keeping with the hypothesis that interaction of the CLL cells with the normal immune function induces changes that result in decrease in T cell differentiation and effector function. It is intriguing to postulate that this effect diminishes autologous anti-tumor responses. We conclude that development of CLL in these transgenic mice induces T cell defects that mimic the defects that occur in CLL patients and that the TCL1 transgenic mouse model will serve as an ideal model to study steps to repair T cell function and their impact on CLL.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jing Huang ◽  
Tiffany Tsao ◽  
Min Zhang ◽  
Moriya Tsuji

Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS) protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6) transgenic (Tg) mice, expressingKdmolecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsetsin vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg) F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg), which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg) F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific,Kd-restricted CD8+ T cells.


1992 ◽  
Vol 176 (6) ◽  
pp. 1733-1738 ◽  
Author(s):  
P J Fink ◽  
K Swan ◽  
G Turk ◽  
M W Moore ◽  
F R Carbone

Murine T cells expressing V beta 5 are characterized by (a) intrathymic deletion in the presence of I-E and products of endogenous mouse mammary tumor viruses, and (b) a greater representation in CD8+ relative to CD4+ peripheral T cells, thought to be due to more efficient intrathymic positive selection on class I rather than class II major histocompatibility complex antigens. We have engineered mice that are transgenic for a rearranged gene encoding a V beta 5+ beta chain of the T cell receptor for antigen. Deletion is not predicted in I-E- V beta 5+ transgenic mice, and until the age of 2 wk, the CD4/CD8 ratio of peripheral T cells is > 3:1 and indistinguishable between transgenic and nontransgenic mice. Transgenic mice then show a rapid, age-dependent decline in the ratio of CD4+ to CD8+ T cells in the lymphoid periphery, reaching a low of 1:10 by 7 mo of age. Furthermore, the percent of peripheral CD4+ cells that express the transgene drops with age, reaching a low of about 60% at 7 mo, while the percent of CD8+ cells that express V beta 5 remains greater than 95% at all ages. The lymphoid periphery is implicated in this selection against CD4+ V beta 5+ T cells as it occurs more rapidly in thymectomized transgenic mice, and can be delayed in mice whose peripheral T cells are replaced by recent thymic emigrants after depletion by in vivo treatment with anti-Thy-1 antibodies. These results indicate that the relative expression of V beta 5 in T cell subsets can be influenced not only intrathymically in I-E+ V beta 5+ transgenic mice, but also by events in the periphery, in the absence of I-E expression.


1999 ◽  
Vol 67 (8) ◽  
pp. 3980-3988 ◽  
Author(s):  
Natalya V. Serbina ◽  
JoAnne L. Flynn

ABSTRACT Several lines of evidence suggest that CD8 T cells are important in protection against tuberculosis. To understand the function of this cell population in the immune response against Mycobacterium tuberculosis, T cells from lungs of M. tuberculosis-infected mice were examined by flow cytometry. The kinetics of the appearance of CD8 T cells in lungs of infected mice closely paralleled that of CD4 T cells. Both CD4+ and CD8+ T cells displaying an activated phenotype were found in the lungs as early as 1 week postinfection. By 2 weeks, total cell numbers in the lungs had tripled and percentages of T cells were increased two- to threefold; the percentages of CD4+ T cells were ca. twofold higher than those of CD8+ T cells. Short-term stimulation with M. tuberculosis-infected antigen-presenting cells induced cytokine production by primed CD4+ and CD8+ T cells. Intracellular cytokine staining revealed that 30% ± 5% of CD4+ and 23% ± 4% of CD8+ T cells were primed for production of gamma interferon (IFN-γ). However, a difference in in vivo IFN-γ production by T cells was observed with ∼12% of CD4+ T cells and ∼5% of CD8+ T cells secreting cytokine in the lungs at any given time during infection. The data presented indicate that although early in infection the majority of IFN-γ is produced by CD4+ T cells, cytokine-producing CD8+ T cells are readily available when triggered by the appropriate stimuli.


Sign in / Sign up

Export Citation Format

Share Document