scholarly journals Angiotensin II Type 2 Receptor Modulates Synovial Macrophage Polarization by Inhibiting GRK2 Membrane Translocation in a Rat Model of Collagen-Induced Arthritis

2020 ◽  
Vol 205 (11) ◽  
pp. 3141-3153
Author(s):  
Xinming Wang ◽  
Jiajie Tu ◽  
Ji Jiang ◽  
Qiaolin Zhang ◽  
Qi Liu ◽  
...  
2004 ◽  
Vol 19 (3) ◽  
pp. 255-261 ◽  
Author(s):  
Beverly L. Falcón ◽  
Jillian M. Stewart ◽  
Erick Bourassa ◽  
Michael J. Katovich ◽  
Glenn Walter ◽  
...  

The role of the angiotensin II type 2 receptor (AT2R) in cardiovascular physiology remains elusive. We have developed an in vivo lentiviral vector-mediated gene transfer system to study the physiological functions of the AT2R. Our objectives in this study were to determine whether the AT2R influences cardiac hypertrophy and myocardial and perivascular fibrosis in a nongenetic rat model of hypertension. Lentiviral vector containing the AT2R or saline was injected intracardially in 5-day-old Sprague-Dawley rats. This resulted in a persistent overexpression of the AT2R in cardiac tissues. At 15 wk of age, animals were infused with either 200 ng·kg−1·min−1 of angiotensin II or saline by implantation of a 4-wk osmotic minipump. This resulted in an increase in blood pressure (BP) that reached maximal by 2 wk of treatment and was associated with a 123% increase in left ventricular wall thickness (LVWT) and a 129% increase in heart weight to body weight ratios (HW/BW). In addition, the increase in cardiac hypertrophy was associated with a 300% and 158% increase in myocardial and perivascular fibrosis, respectively. Cardiac transduction of the AT2R resulted in an 85% attenuation of LVWT, 91% attenuation of HW/BW, and a 43% decrease in myocardial fibrosis induced by angiotensin infusion. These improvements in cardiac pathology were observed in the absence of attenuation of high BP. Thus our observations indicate that long-term expression of the AT2R in the heart attenuates cardiac hypertrophy and fibrosis in a nongenetic rat model of hypertension.


2014 ◽  
Vol 25 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Maree T. Smith ◽  
Tanya Lau ◽  
Victoria C.J. Wallace ◽  
Bruce D. Wyse ◽  
Andrew S.C. Rice

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e60067 ◽  
Author(s):  
Fei Jing ◽  
Masaki Mogi ◽  
Li-Juan Min ◽  
Kousei Ohshima ◽  
Hirotomo Nakaoka ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3684-3693 ◽  
Author(s):  
Samuel Leblanc ◽  
Marie-Claude Battista ◽  
Christophe Noll ◽  
Anders Hallberg ◽  
Nicole Gallo-Payet ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.


2005 ◽  
Vol 173 (4S) ◽  
pp. 283-284
Author(s):  
Istvan Kovanecz ◽  
Monica G. Ferrini ◽  
Hugo H. Davila ◽  
Jacob Rajfer ◽  
Nestor F. Gonzalez-Cadavid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document