KAP1-Mediated Epigenetic Suppression in Anti-RNA Viral Responses by Direct Targeting RIG-I and MDA5

2021 ◽  
pp. ji2100342
Author(s):  
Qi Li ◽  
Ying Qin ◽  
Wenwen Wang ◽  
Mutian Jia ◽  
Wei Zhao ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1332
Author(s):  
Alexander Spaeth ◽  
Thomas Masetto ◽  
Jessica Brehm ◽  
Leoni Wey ◽  
Christian Kochem ◽  
...  

In 2019, a novel coronavirus emerged in Wuhan in the province of Hubei, China. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly spread across the globe, causing the neoteric COVID-19 pandemic. SARS-CoV-2 is commonly transmitted by droplet infection and aerosols when coughing or sneezing, as well as high-risk exposures to infected individuals by face-to-face contact without protective gear. To date, a broad variety of techniques have emerged to assess and quantify the specific antibody response of a patient towards a SARS-CoV-2 infection. Here, we report the first comprehensive comparison of five different assay systems: Enzyme-Linked Immunosorbent Assay (ELISA), Chemiluminescence Immunoassay (CLIA), Electro-Chemiluminescence Immunoassay (ECLIA), and a new Particle-Enhanced Turbidimetric Immunoassay (PETIA) for SARS-CoV-2. Furthermore, we also evaluated the suitability of N-, S1- and RBD-antigens for quantifying the SARS-CoV-2 specific immune response. Linearity and precision, overall sensitivity and specificity of the assays, stability of samples, and cross-reactivity of general viral responses, as well as common coronaviruses, were assessed. Moreover, the reactivity of all tests to seroconversion and different sample matrices was quantified. All five assays showed good overall agreement, with 76% and 87% similarity for negative and positive samples, respectively. In conclusion, all evaluated methods showed a high consistency of results and suitability for the robust quantification of the SARS-CoV-2-derived immune response.


Author(s):  
Marina Rieder ◽  
Luisa Wirth ◽  
Luisa Pollmeier ◽  
Maren Jeserich ◽  
Isabella Goller ◽  
...  

Abstract Background Severe courses of COVID-19 are associated with elevated levels of interleukin 6. However, there is a growing body of evidence pointing to a broad and more complex disorder of pro-inflammatory and anti-viral responses with disturbed interferon signaling in COVID-19. Methods In this prospective single-center registry, we included SARS-CoV-2 positive patients and patients with similar symptoms and severity of disease but negative for SARS-CoV-2 admitted to the emergency department and compared their serum protein expression profiles. Results Interleukin-6 abundance was similar in SARS-CoV-2 positive patients (n = 24) compared to SARS-CoV-2 negative control (n = 61). In contrast, we observed a specific upregulation of the immunomodulatory protein progranulin (GRN). High GRN abundance was associated with adverse outcomes and increased expression of interleukin-6 in COVID-19. Conclusion The data from this registry reveals that GRN is specifically upregulated in SARS-CoV-2 positive patients while interleukin-6 may serve as marker for disease severity. The potential of GRN as a biomarker and a possible impact of increased GRN expression on interferon signaling, virus elimination, and virus-induced lung tissue damage in COVID-19 should be further explored.


2017 ◽  
Vol 38 (4) ◽  
pp. 1995-2002 ◽  
Author(s):  
Gang Li ◽  
Tie Chong ◽  
Xiaolong Xiang ◽  
Jie Yang ◽  
Hongliang Li

Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Srivatsan Pallavaram ◽  
Pierre-François D'Haese ◽  
Wendell Lake ◽  
Peter E. Konrad ◽  
Benoit M. Dawant ◽  
...  

Abstract BACKGROUND: Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE: To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS: In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS: Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION: Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.


Sign in / Sign up

Export Citation Format

Share Document