scholarly journals Physicochemical and Electrical Properties of Praseodymium Oxides

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sergio Ferro

The industrial research is continuously looking for novelties that could improve the applied processes, increasing the yields, lowering the costs, or improving the performances. In industrial electrochemistry, one more aspect is the stability of electrode materials, which is generally balanced by the catalytic activity: the higher the latter, the lower the former. A compromise has to be found, and an optimization is often the result of new ideas that completely change the way of thinking. Praseodymium-oxide-based cathodes have been proved to be quite interesting devices: the hydrogen evolution reaction is guaranteed by the presence of a noble metal (platinum and/or rhodium), while the stability and poisoning resistance seem to be strongly improved by the presence of lanthanide oxides.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1022 ◽  
Author(s):  
Fan Yang ◽  
Shuo Huang ◽  
Bing Zhang ◽  
Liqiang Hou ◽  
Yi Ding ◽  
...  

The development of non-noble metal hydrogen evolution catalysts that can replace Pt is crucial for efficient hydrogen production. Herein, we develop a type of well-dispersed Ni2P on N-doped nanomesh carbon (NC) electrocatalyst by a facile pyrolysis method, which shows excellent hydrogen evolution reaction (HER) catalytic performance. It is rather remarkable that the overpotential of Ni2P/NC prepared under optimal proportion is 108 mV at 10 mA·cm−2 current density in 1 M KOH solution with the tafel slope of 67.3 mV·dec−1, the catalytic activity has no significant attenuation after 1000 cycles of cyclic voltammetry (CV)method. The hydrogen evolution performance of the electrocatalytic is better than most similar catalysts in alkaline media. The unique mesh structure of the carbon component in the catalyst facilitates the exposure of the active site and reduces the impedance, which improves the efficiency of electron transport as well as ensuring the stability of the hydrogen evolution reaction. In addition, we prove that nitrogen doping and pore structure are also important factors affecting catalytic activity by control experiments. Our results show that N-doped nanomesh carbon, as an efficient support, combined with Ni2P nanoparticles is of great significance for the development of efficient hydrogen evolution electrodes.


2021 ◽  
Vol 60 (3) ◽  
pp. 1604-1611
Author(s):  
Zepeng Lv ◽  
Meng Wang ◽  
Dong Liu ◽  
Kailiang Jian ◽  
Run Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14063-14070
Author(s):  
M. Morishita ◽  
A. Nozaki ◽  
H. Yamamoto ◽  
N. Fukumuro ◽  
M. Mori ◽  
...  

The catalytic activity of the Co-doped WC is 30% higher than that of Pt nanoparticles for the hydrogen evolution reaction arising from an internal magnetic field.


2021 ◽  
Author(s):  
Changhai Liu ◽  
Yanhua Yao ◽  
Lei Sun ◽  
Linlin Luo ◽  
Wenchang Wang ◽  
...  

Herein, we present hierarchical Mo-doped NiCoP@carbon microspheres, which exhibits noticeable enhancement of catalytic activity and fast kinetics for hydrogen evolution. An overpotentials of 74.6 mV at 10 mA cm-2 and...


Author(s):  
Zongyun Mu ◽  
Ting Guo ◽  
Hao Fei ◽  
Dingsheng Xu ◽  
Yaoqing Mao ◽  
...  

Molybdenum carbide (Mo2C) has received great attention as a promising non-noble metal electrocatalyst for hydrogen evolution reaction (HER). The exposure of more catalytic sites and optimal Mo-H bonding strength via...


Sign in / Sign up

Export Citation Format

Share Document