scholarly journals Cyclic Voltammetry and Impedance Spectroscopy Behavior Studies of Polyterthiophene Modified Electrode

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Naima Maouche ◽  
Belkacem Nessark

We present in this work a study of the electrochemical behaviour of terthiophene and its corresponding polymer, which is obtained electrochemically as a film by cyclic voltammetry (CV) on platinum electrode. The analysis focuses essentially on the effect of two solvents acetonitrile and dichloromethane on the electrochemical behaviour of the obtained polymer. The electrochemical behavior of this material was investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The voltammograms show that the film of polyterthiophene can oxide and reduce in two solutions; in acetonitrile, the oxidation current intensity is more important than in dichloromethane. The impedance plots show the semicircle which is characteristic of charge-transfer resistance at the electrode/polymer interface at high frequency and the diffusion process at low frequency.

Chemosensors ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
Georg Christoph Brunauer ◽  
Oliver Spadiut ◽  
Alfred Gruber ◽  
Christoph Slouka

Electrochemical impedance spectroscopy is a powerful tool in life science for cell and pathogen detection, as well as for cell counting. The measurement principles and techniques using impedance spectroscopy are highly diverse. Differences can be found in used frequency range (β or α regime), analyzed quantities, like charge transfer resistance, dielectric permittivity of double layer capacitance and in off- or online usage. In recent contributions, applications of low-frequency impedance spectroscopy in the α regime were tested for determination of cell counts and metabolic burden in Escherichia coli and Saccharomyces cerevisiae. The established easy to use methods showed reasonable potential in the lab scale, especially for S. cerevisiae. However, until now, measurements for cell counts in food science are generally based on Thoma cell counting chambers. These microscopic cell counting methods decelerate an easy and quick prediction of yeast viability, as they are labor intensive and result in a time delayed response signal. In this contribution we tested our developed method using low frequency impedance spectroscopy locally at an industrial brewery propagation site and compared results to classic cell counting procedures.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 788
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

Aggregation of amyloid-β (aβ) peptides into toxic oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer’s disease (AD) and is the primary focus of AD diagnostics. Disaggregation or elimination of toxic aβ aggregates in patients is important for delaying the progression of neurodegenerative disorders in AD. Recently, 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was introduced as a chemical agent that binds with toxic aβ aggregates and transforms them into monomers to reduce the negative effects of aβ aggregates in the brain. However, the mechanism of aβ disaggregation by EPPS has not yet been completely clarified. In this study, an electrochemical impedimetric immunosensor for aβ diagnostics was developed by immobilizing a specific anti-amyloid-β (aβ) antibody onto a self-assembled monolayer functionalized with a new interdigitated chain-shaped electrode (anti-aβ/SAM/ICE). To investigate the ability of EPPS in recognizing AD by extricating aβ aggregation, commercially available aβ aggregates (aβagg) were used. Electrochemical impedance spectroscopy was used to probe the changes in charge transfer resistance (Rct) of the immunosensor after the specific binding of biosensor with aβagg. The subsequent incubation of the aβagg complex with a specific concentration of EPPS at different time intervals divulged AD progression. The decline in the Rct of the immunosensor started at 10 min of EPPS incubation and continued to decrease gradually from 20 min, indicating that the accumulation of aβagg on the surface of the anti-aβ/SAM/ICE sensor has been extricated. Here, the kinetic disaggregation rate k value of aβagg was found to be 0.038. This innovative study using electrochemical measurement to investigate the mechanism of aβagg disaggregation by EPPS could provide a new perspective in monitoring the disaggregation periods of aβagg from oligomeric to monomeric form, and then support for the prediction and handling AD symptoms at different stages after treatment by a drug, EPPS.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Minna Toivola ◽  
Janne Halme ◽  
Lauri Peltokorpi ◽  
Peter Lund

Effects of aging and cyclically varying temperature on the electrical parameters of dye solar cells were analyzed with electrochemical impedance spectroscopy. Photoelectrode total resistance increased as a function of time due to increasing electron transport resistance in theTiO2film. On the other hand, photoelectrode recombination resistance was generally larger, electron lifetimes in theTiO2were film longer, and charge transfer resistance on the counter electrode was smaller after the temperature treatments than before them. These effects correlated with the slower deterioration rate of the temperature-treated cells, in comparison to the reference cells.


Author(s):  
Dora Zalka ◽  
Soma Vesztergom ◽  
Mária Ujvári ◽  
Gyözö Láng

<p class="PaperAbstract">Time dependence of the electrochemical impedance of an overoxidized glassy carbon|poly(3,4-ethylenedioxytiophene) (PEDOT)|0.1 mol·dm<sup>-3</sup> sulfuric acid (aq.) elec­trode has been investigated. To follow the changes occurring at the film/substrate interface after the overoxidation procedure, successive impedance measurements were carried out. Although the system is intrinsically nonstationary, the charge transfer resis­tance (R<sub>ct</sub>) cor<strong>­</strong>res<strong>­</strong>ponding to different time instants could be determined by using the so-called 4-dimensional analysis method. The same post-experimental mathematic­cal/ana­lytical procedure could be used also for the estimation of the charge transfer resistance corresponding to the time instant just after overoxidation of the PEDOT film. The increase of the charge transfer resistance of the overoxidized system with respect to that of the pristine electrode suggests that during overoxidation the electrochemical activity of the film decreases and the charge transfer process at the metal/film interface beco­mes more hindered. After the overoxidation procedure, when the electrode potential was held in the “stability region” (at E = 0.4 V vs. SSCE in the present case) the R<sub>ct</sub> decre­ased continuously with experiment time to a value somewhat higher than that of the pristine electrode.<strong> </strong>By comparing the properties of the GC|PEDOT|0.1 M H<sub>2</sub>SO<sub>4</sub> and the Au|PEDOT|0.1 M H<sub>2</sub>SO<sub>4</sub> electrodes a possible mechanistic explanation for the observed behavior has been proposed. This is based on the assumption that in the case of the GC|PEDOT|0.1 M H<sub>2</sub>SO<sub>4</sub> electrode two processes may occur simultaneously during the impedance measurements: (a) reduction of the oxidized surface of the GC substrate, including the reduction of the oxygen-containing surface functionalities and (b) read­sorption of the polymer chains (polymer chain ends) on the surface.<strong></strong></p>


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4507 ◽  
Author(s):  
Yusuke Abe ◽  
Natsuki Hori ◽  
Seiji Kumagai

Lithium-ion batteries (LIBs) using a LiFePO4 cathode and graphite anode were assembled in coin cell form and subjected to 1000 charge-discharge cycles at 1, 2, and 5 C at 25 °C. The performance degradation of the LIB cells under different C-rates was analyzed by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. The most severe degradation occurred at 2 C while degradation was mitigated at the highest C-rate of 5 C. EIS data of the equivalent circuit model provided information on the changes in the internal resistance. The charge-transfer resistance within all the cells increased after the cycle test, with the cell cycled at 2 C presenting the greatest increment in the charge-transfer resistance. Agglomerates were observed on the graphite anodes of the cells cycled at 2 and 5 C; these were more abundantly produced in the former cell. The lower degradation of the cell cycled at 5 C was attributed to the lowered capacity utilization of the anode. The larger cell voltage drop caused by the increased C-rate reduced the electrode potential variation allocated to the net electrochemical reactions, contributing to the charge-discharge specific capacity of the cells.


2008 ◽  
Vol 5 (3) ◽  
pp. 539-550 ◽  
Author(s):  
Ibrahim Ender Mulazimoglu ◽  
Erdal Ozkan

In this study, cyclic voltammetry and electrochemical ımpedance spectroscopy have been used to investigate the electrochemical behaviour of quercetin (3,3′,4′,5,7-pentahydroxyflavone) on the procaine and aminophenyl modified electrode. The modification of procaine and aminophenyl binded electrode surface with quercetin was performed in +0,3/+2,8 V (for procaine) and +0,4/+1,5 V (for aminophenyl) potential range using 100 mV s-1scanning rate having 10 cycle. A solution of 0.1 M tetrabutylammonium tetrafluoroborate in acetonitrile was used as a non-aquous solvent. For the modification process a solution of 1 mM quercetin in 0.1 M tetrabutylammonium tetrafluoroborate was used. In order to obtain these two surface, a solution of 1 mM procaine and 1 mM nitrophenyl diazonium salt in 0.1 M tetrabutylammonium tetrafluoroborate was used. By using these solutions bare glassy carbon electrode surface was modified. Nitrophenyl was reduced to amine group in 0.1 M HCl medium on the nitrophenyl modified glassy carbon elelctrode surface. Procaine modified glassy carbon electrode surface was quite electroactive. Although nitrophenyl modified glassy carbon elelctrode surface was electroinactive, it was activated by reducing nitro group into amine group. For the characterization of the modified surface 1 mM ferrocene in 0.1 M tetrabutylammonium tetrafluoroborate for cyclic voltammetry and 1 mM ferricyanide/ferrocyanide (1:1) mixture in 0,1 M KCl for electrochemical impedance spectroscopy were used.


Soft Matter ◽  
2014 ◽  
Vol 10 (34) ◽  
pp. 6467-6476 ◽  
Author(s):  
Choonghyun Sung ◽  
Katelin Hearn ◽  
Jodie Lutkenhaus

Layer-by-layer assemblies exhibit increased conductivity and decreased charge transfer resistance upon heating through the thermal transition.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1314 ◽  
Author(s):  
Paulina Szymanowska ◽  
Damian Nowak ◽  
Tomasz Piasecki

Miniaturized and integrated analytical devices, including chemical sensors, are at the forefront of modern analytical chemistry. The construction of novel analytical tools takes advantage of contemporary micro- and nanotechnologies, as well as materials science and technology. Two electrochemical techniques were used in experiments: electrochemical impedance spectroscopy and cyclic voltammetry. The goal of this study was to investigate electron transfer resistance in a model solution containing Fe 2 + / 3 + ions and protein adsorption using integrated electrochemical cells with different geometry. Tests performed at various Fe 2 + / 3 + concentration allowed to verify that these cells work properly. The influence of bovine serum albumin adsorbing to the surface of the integrated electrochemical cells was investigated. In electrochemical impedance spectroscopy, the value of R c t increased with protein adsorption and the relative change of R c t was in range 21% to 55%. In cyclic voltammetry the decreasing amperometric response of the working electrode was used as evidence of protein adsorption on the electrode.


Sign in / Sign up

Export Citation Format

Share Document