scholarly journals Use of Near Infrared Reflectance (NIR) Spectroscopy to Predict Chemical Composition of Forages in Broad-Based Calibration Models

2006 ◽  
Vol 66 (1) ◽  
Author(s):  
Jaime Garcia ◽  
Daniel Cozzolino
2006 ◽  
Vol 82 (1) ◽  
pp. 111-116 ◽  
Author(s):  
N. Barlocco ◽  
A. Vadell ◽  
F. Ballesteros ◽  
G. Galietta ◽  
D. Cozzolino

AbstractPartial least-squares (PLS) models based on visible (Vis) and near infrared reflectance (NIR) spectroscopy data were explored to predict intramuscular fat (IMF), moisture and Warner Bratzler shear force (WBSF) in pork muscles (m. longissimus thoracis) using two sample presentations, namely intact and homogenized. Samples were scanned using a NIR monochromator instrument (NIRSystems 6500, 400 to 2500 nm). Due to the limited number of samples available, calibration models were developed and evaluated using full cross validation. The PLS calibration models developed using homogenized samples and raw spectra yielded a coefficient of determination in calibration (R2) and standard error of cross validation (SECV) for IMF (R2=0·87; SECV=1·8 g/kg), for moisture (R2=0·90; SECV=1·1 g/kg) and for WBSF (R2=0·38; SECV=9·0 N/cm). Intact muscle presentation gave poorer PLS calibration models for IMF and moisture (R2<0·70), however moderate good correlation was found for WBSF (R2=0·64; SECV=8·5 N/cm). Although few samples were used, the results showed the potential of Vis-NIR to predict moisture and IMF using homogenized pork muscles and WBSF in intact samples.


2021 ◽  
Vol 11 (23) ◽  
pp. 11282
Author(s):  
Eleni Kasapidou ◽  
Vasileios Papadopoulos ◽  
Paraskevi Mitlianga

In the present study, the potential of application of near infrared reflectance (NIR) spectroscopy for the estimation of the chemical composition of traditional (village style) sausages was examined. The chemical composition (moisture, ash, protein and, fat) was determined by standard reference methods. For the development of the calibration model, 39 samples of traditional fresh sausages were used, while for external validation, 10 samples of sausages were used. The correlation coefficients of calibration (RMSEC) and standard errors (SEC) were 0.92 and 1.58 (moisture), 0.77 and 0.18 (ash), 0.87 and 0.89 (protein) and 0.93 and 1.73 (fat). The cross-validation correlation coefficients (RMSECV) and standard errors (SECV) were 0.86 and 2.13 (moisture), 0.56 and 0.26 (ash), 0.78 and 1.17 (protein), and 0.88 and 2.17 (fat). The results of the calibration model showed that NIR spectroscopy can be applied to estimate with very good precision the fat content of traditional village-style sausages, whereas moisture and protein content can be estimated with good accuracy. The external validation confirmed the ability of NIR spectroscopy to predict the chemical composition of sausages.


1991 ◽  
Vol 31 (2) ◽  
pp. 205 ◽  
Author(s):  
KF Smith ◽  
PC Flinn

Near infrared reflectance (NIR) spectroscopy is a rapid and cost-effective method for the measurement of organic constituents of agricultural products. NIR is widely used to measure feed quality around the world and is gaining acceptance in Australia. This study describes the development of an NIR calibration to measure crude protein (CP), predicted in vivo dry matter digestibility (IVDMD) and neutral detergent fibre (NDF) in temperate pasture species grown in south-western Victoria. A subset of 116 samples was selected on the basis of spectral characteristics from 461 pasture samples grown in 1987-89. Several grass and legume species were present in the population. Stepwise multiple linear regression analysis was used on the 116 samples to develop calibration equations with standard errors of 0.8,2.3 and 2.2% for CP, NDF and IVDMD, respectively. When these equations were tested on 2 independent pasture populations, a significant bias existed between NIR and reference values for 2 constituents in each population, indicating that the calibration samples did not adequately represent the new populations for these constituents. The results also showed that the H statistic alone was inadequate as an indicator of equation performance. It was confirmed that it was possible to develop a broad-based calibration to measure accurately the nutritive value of closed populations of temperate pasture species. For the resulting equations to be used for analysis of other populations, however, they must be monitored by comparing reference and NIR analyses on a small number of samples to check for the presence of bias or a significant increase in unexplained error.


2009 ◽  
Vol 2009 ◽  
pp. 135-135
Author(s):  
N Prieto ◽  
D W Ross ◽  
E A Navajas ◽  
G Nute ◽  
R I Richardson ◽  
...  

Visible and near infrared reflectance spectroscopy (Vis-NIR) has been widely used by the industry research-base for large-scale meat quality evaluation to predict the chemical composition of meat quickly and accurately. Meat tenderness is measured by means of slow and destructive methods (e.g. Warner-Bratzler shear force). Similarly, sensory analysis, using trained panellists, requires large meat samples and is a complex, expensive and time-consuming technique. Nevertheless, these characteristics are important criteria that affect consumers’ evaluation of beef quality. Vis-NIR technique provides information about the molecular bonds (chemical constituents) and tissue ultra-structure in a scanned sample and thus can indirectly predict physical or sensory parameters of meat samples. Applications of Vis-NIR spectroscopy in an abattoir for prediction of physical and sensory characteristics have been less developed than in other fields. Therefore, the aim of this study was to test the on-line Vis-NIR spectroscopy for the prediction of beef quality characteristics such as colour, instrumental texture, water holding capacity (WHC) and sensory traits, by direct application of a fibre-optic probe to the M. longissimus thoracis with no prior sample treatment.


1995 ◽  
Vol 78 (3) ◽  
pp. 802-806 ◽  
Author(s):  
José Louis Rodriguez-Otero ◽  
Maria Hermida ◽  
Alberto Cepeda

Abstract Near-infrared reflectance (NIR) spectroscopy was used to analyze fat, protein, and total solids in cheese without any sample treatment. A set of 92 samples of cow’s milk cheese was used for instrument calibration by principal components analysis and modified partial least-square regression. The following statistical values were obtained: standard error of calibration (SEC) = 0.388 and squared correlation coefficient (R2) = 0.99 for fat, SEC = 0.397 and R2 = 0.98 for protein, and SEC = 0.412 and R2 = 0.99 for total solids. To validate the calibration, an independent set of 25 cheese samples of the same type was used. Standard errors of validation were 0.47,0.50, and 0.61 for fat, protein, and total solids, respectively, and hf for the regression of measurements by reference methods versus measurements by NIR spectroscopy was 0.98 for the 3 components.


Sign in / Sign up

Export Citation Format

Share Document