scholarly journals Characterization of the root system of the Conilon coffee plant under localized irrigation

2021 ◽  
Vol 39 (3) ◽  
pp. 117-124
Author(s):  
Joabe Martins de Souza ◽  
Edvaldo Fialho dos Reis ◽  
Robson Bonomo ◽  
Giovanni de Oliveira Garcia ◽  
Lucas Rosa Pereira
Keyword(s):  
2019 ◽  
Vol 41 (10) ◽  
Author(s):  
Imre Cseresnyés ◽  
Tünde Takács ◽  
Bettina Sepovics ◽  
Ramóna Kovács ◽  
Anna Füzy ◽  
...  

2017 ◽  
Vol 41 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Marcelo Rossi Vicente ◽  
Everardo Chartuni Mantovani ◽  
André Luís Teixeira Fernandes ◽  
Júlio César Lima Neves ◽  
Edmilson Marques Figueredo ◽  
...  

ABSTRACT The development of coffee plant root system changes when subjected to drip irrigation and fertigation. This work aimed to evaluate the effects of different levels of fertigation on the development of coffee root system by drip irrigation in western Bahia. The experiment was carried out with Catuaí Vermelho IAC 144 coffee plants, of about 3.5 years of age, in the “Café do Rio Branco” farm, located in Barreiras - BA, and consisted of a complete randomized blocks design with 3 replicates. Treatments consisted of three levels of nitrogen and potassium fertilization (900/800, 600/500 and 300/250 kg ha-1 year-1 N and K2O), weekly distributed, by means of fertigation, throughout the process. After the fourth harvest, coffee root system was evaluated, and root length density (RLD) and root density (RD) were determined at different sampled layers. The highest root concentration, root length density (RLD), and root density (RD) were observed in the superficial layers of soil (0-20 cm), and under the dripline (30 and 70 cm from the orthotropic branch). Results showed that the lower the N and K2O levels, the higher was the development (RLD and RD) of the coffee root system.


Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 109 ◽  
Author(s):  
Victoria Figueroa-Bustos ◽  
Jairo Palta ◽  
Yinglong Chen ◽  
Kadambot Siddique

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuko Krzyzaniak ◽  
Frédéric Cointault ◽  
Camille Loupiac ◽  
Eric Bernaud ◽  
Frédéric Ott ◽  
...  

The root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of grapevine cuttings (mode of grapevine propagation), and also two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We observed that hydroponics tubes are a system easy to implement but do not allow the direct quantification of root traits over time, conversely to 2D imaging in rhizotron. We demonstrated that neutron tomography is relevant to quantify the root volume. We have also produced a new automated analysis method of digital photographs, adapted for identifying adventitious roots as a feature of root architecture in rhizotrons. This method integrates image segmentation, skeletonization, detection of adventitious root skeleton, and adventitious root reconstruction. Although this study was targeted to grapevine, most of the results obtained could be extended to other plants propagated by cuttings. Image analysis methods could also be adapted to characterization of the root system from seedlings.


Author(s):  
Taras Pasternak ◽  
Benedetto Ruperti ◽  
Klaus Palme

ABSTRACTBackgroundArabidopsis research relies extensively on the use of in vitro growth for phenotypic analysis of the seedlings and characterization of plant responses to intrinsic and extrinsic cues. For this purpose, stress-free optimal growth conditions should be set up and used as a reference especially in studies aimed at characterizing the plant responses to abiotic and biotic stresses. Currently used standard in vitro protocols for growth and characterization of Arabidopsis thaliana plants often suffer from sub-optimal composition due to an excessively high nutritional content which represents a stress per se and an experimental bias.ResultsWe describe a simple protocol for in vitro growth of Arabidopsis plants in which the phenotypic analysis is based on an optimized and nutritionally balanced culture medium. We show that the protocol is robustly applicable for growth of several Arabidopsis mutants, including mutants lacking the root system. This protocol enables rapid high scale seed production in vitro avoiding soil usage while saving space and time. The optimized in vitro protocol aims at: 1) making in vitro growth as close as possible to natural soil conditions by optimizing nutrient balance in the medium; 2) simplifying phenotypic and molecular investigation of individual plants by standardizing all steps of plant growth; 3) enabling seeds formation also in genotypes with severe defect in the root system; 4) minimizing the amount of waste and space for plant growth by avoiding soil usage.ConclusionsHere we report an optimized protocol for optimal growth of Arabidopsis thaliana plants to avoid biases in phenotypic observation of abiotic/biotic stress experiments. The protocol also enables the completion of the whole life cycle in vitro within 40-45 days and a satisfactory seed set for further propagation with no need for facilities for plant growth in soil and seed sterilisation.


1990 ◽  
Vol 11 (6) ◽  
pp. 523-533 ◽  
Author(s):  
P.D. Chawathe ◽  
G.R. Vijayakumar
Keyword(s):  

2012 ◽  
Vol 36 (6) ◽  
pp. 1804-1813 ◽  
Author(s):  
Rodolfo Martins Bonilha ◽  
José Carlos Casagrande ◽  
Marcio Roberto Soares ◽  
Rose Mary Reis-Duarte

The Restinga vegetation consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. The climate along the coast is tropical (Köppen). Of all ecosystems of the Atlantic Forest, Restinga is the most fragile and susceptible to anthropic disturbances. Plants respond to soil characteristics with physiological and morphological modifications, resulting in changes in the architecture (spatial configuration) of the root system. The purpose of this study was to characterize the soil fertility of high and low restinga forests, by chemical and physical parameters, and its relation to the root system distribution in the soil profile. Four locations were studied: (1) Ilha Anchieta State Park, Ubatuba; (2) two Ecological Stations of Jureia-Itatins and of Chauás, in the municipality of Iguape; (3) Vila de Pedrinhas in the municipality of Ilha Comprida; and (4) Ilha do Cardoso State Park, Cananeia. The soil fertility (chemical and physical properties) was analyzed in the layers 0-5, 0-10, 0-20, 20-40 and 40-60 cm. In addition, the distribution of the root system in the soil profile was evaluated, using digital images and the Spring program. It was concluded that the root system of all vegetation types studied is restricted to the surface layers, 0-10 and 10-20 cm, but occupies mainly the 0-10 cm layer (70 %); that soil fertility is low in all environments studied, with base saturation values below 16 %, since most exchange sites are occupied by aluminum; and that restinga vegetation is edaphic.


Sign in / Sign up

Export Citation Format

Share Document