Ceramic modules for micro solid-oxide fuel cells

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000009-000016
Author(s):  
Thomas Maeder ◽  
Bo Jiang ◽  
Yan Yan ◽  
Peter Ryser ◽  
Paul Muralt

Micro solid-oxide fuel cells (μ -SOFCs) based on microfabrication processes are a promising alternative to batteries for supplying portable electronics, as very high energy densities may be achieved. However, a complete μ -SOFC module is a quite intricate structure, comprising 1) a gas-processing unit (GPU) to process a convenient energy source such as lighter gas into a more usable form, 2) the energy-generating cells proper, and 3) a post-combustor. The mechanical integration of these elements and their fluidic and electrical interconnection into a single module is a very challenging task for micro-scale integration. Therefore, a modular low-temperature co-fired ceramic (LTCC) package is proposed, allowing individual testing and subsequent full integration of the different cell elements. The package functions as a hotplate, a mechanical support for the hot zone and as an electrical / fluidic interconnect, applying a slender-bridge design to minimise thermal conduction losses and stresses, thus allowing convenient low-temperature electrical connections and fluidic ports. For applications requiring a better thermal expansion match to silicon and borosilicate glass, a silicon / borosilicate glass-sealed variant was also developed. Preliminary thermal characterisation of these packages is shown, and concepts for integrating the GPU and post-combustor into the LTCC structure are presented.

2019 ◽  
Vol 2 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Sun Jae Kim ◽  
Taner Akbay ◽  
Junko Matsuda ◽  
Atsushi Takagaki ◽  
Tatsumi Ishihara

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yixiao Cai ◽  
Yang Chen ◽  
Muhammad Akbar ◽  
Bin Jin ◽  
Zhengwen Tu ◽  
...  

AbstractSince colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.


2021 ◽  
Vol 46 (73) ◽  
pp. 36445-36453
Author(s):  
Myung Seok Lee ◽  
Sanghoon Lee ◽  
Wonyeop Jeong ◽  
Sangbong Ryu ◽  
Wonjong Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document