scholarly journals Thermo-structural analysis of reinforced concrete beams

Fire Research ◽  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Dalilah Pires ◽  
Rafael C. Barros ◽  
Ricardo A. M. Silveira ◽  
Ígor J. M. Lemes ◽  
Paulo A. S. Rocha

The objective of this study is to simulate the behavior of reinforced concrete beams in fire situation. In order to achieve this objective, advanced numerical formulations were developed, implemented and evaluated. When exposed to high temperatures, the properties of the material deteriorate, resulting in the loss of strength and stiffness. To achieve the goal, two new modules within the Computational System for Advanced Structural Analysis were created: Fire Analysis and Fire Structural Analysis. The first one aims to determine the temperature field in the cross section of structural elements through thermal analysis by using the Finite Element Method (FEM). The second was designed to perform the second-order inelastic analysis of structures under fire using FEM formulations based on the Refined Plastic Hinge Method coupled with the Strain Compatibility Method. The results obtained of the nonlinear analyses of two reinforced concrete beams under high temperature were compared with the numerical and experimental solutions available in literature and were highly satisfactory. These results also showed that the proposed numerical approach can be used to study the progressive collapse of other reinforced concrete structures in fire situation and extended to the numerical analysis of composite structures under fire condition.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2018 ◽  
Vol 11 (1) ◽  
pp. 26-51 ◽  
Author(s):  
G. P. PELLIZZER ◽  
E. D. LEONEL ◽  
C. G. NOGUEIRA

Abstract Every structure is subjected to the effects of time and environment on which they are located. The consideration of these effects and their consequences in design phase is called nowadays as durability analysis of the structural system. The corrosion of the reinforcement steel through the chloride penetration inside the concrete is the main cause of the lifetime deterioration of the reinforced concrete structures. As a direct consequence, the corrosion affects the resistant capacity of the structural elements as the process evolves over time. Therefore, the appropriate prediction of the structural lifetime depends directly of the prevision capacity of those effects over the behavior of the structural systems. In this work, a mechanical model that combines the corrosion effects over the reinforcement and the concrete and steel material nonlinear responses is proposed to predict the resistant loss of reinforced concrete beams over the time. The steel and concrete nonlinear behavior was modeled by model based on unidimensional plasticity theory and damage mechanics, respectively. The Fick’s laws and empirical methods based on the Faraday’s laws were used to represent chloride penetration inside concrete and reinforced degradation, respectively. A simplified process was adopted to simulate the corrosion beginning in different times over the structure. The results showed that the rate of loss resistant capacity of the analyzed beam is higher in the first years after the beginning of corrosion and tend to stabilized in subsequent years. Furthermore, the structural behavior is very sensitive regarding the considered corrosive effects in the analyses.


Sign in / Sign up

Export Citation Format

Share Document