scholarly journals Sildenafil improves clinical and functional status of an elderly postmenopausal female with ‘out of proportion’ PH associated with left heart disease

2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Michele Correale ◽  
Antonio Totaro ◽  
Armando Ferraretti ◽  
Matteo Di Biase ◽  
Natale Daniele Brunetti

We report a case of an elderly woman with heart failure with preserved ejection fraction and pulmonary hypertension (HFpEF-PH), refractory to conventional therapy for left heart failure and successfully treated by sildenafil.

2019 ◽  
Vol 316 (5) ◽  
pp. H1167-H1177 ◽  
Author(s):  
Jennifer L. Philip ◽  
Thomas M. Murphy ◽  
David A. Schreier ◽  
Sydney Stevens ◽  
Diana M. Tabima ◽  
...  

Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV) remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease pathophysiology. LHF was created using a left anterior descending artery ligation to cause myocardial infarction (MI) in mice. Sham animals underwent thoracotomy alone. Echocardiography demonstrated increased left ventricle (LV) volumes and decreased ejection fraction at 4 wk post-MI that did not normalize by 12 wk post-MI. Elevation of LV diastolic pressure and RV systolic pressure at 12 wk post-MI demonstrated pulmonary hypertension (PH) due to LHF. There was increased pulmonary arterial elastance and pulmonary vascular resistance associated with perivascular fibrosis without other remodeling. There was also RV contractile dysfunction with a 35% decrease in RV end-systolic elastance and 66% decrease in ventricular-vascular coupling. In this model of PH due to LHF with reduced ejection fraction, pulmonary fibrosis contributes to increased RV afterload, and loss of RV contractility contributes to RV dysfunction. These are key pathologic features of human PH secondary to LHF. In the future, novel therapeutic strategies aimed at preventing pulmonary vascular mechanical changes and RV dysfunction in the context of LHF can be tested using this model. NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction. Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure and offers a robust platform for future investigations.


2017 ◽  
Vol 1 (1) ◽  
pp. 9-21
Author(s):  
Djanggan Sargowo

In patients with left heart failure, pulmonary hypertension and right ventricular dysfunction is a common condition and has important implications in the development of disease, disability and death, so it required special attention. Pulmonary hypertension is the most common form with approximately 65-80% of cases. Although today is already highly developed understanding of the pathophysiology and clinical assessment, as well as setting the hemodynamic definition and classification of pulmonary hypertension in left heart failure, but the interrelation hemodynamics in pulmonary hypertension combination of pre- and post-capillary is still very complex, and there is no evidence-based recommendations the handling of pulmonary hypertension is left heart failure. Here, we will discuss the prevalence and significance of pulmonary hypertension and cardiac dysfunction Right in patients with both heart failure with ejection fraction decreased, as well as heart failure with ejection fraction, as well as provides an overview of the pathophysiology of the complex due to the interaction of cardiopulmonary left heart failure, which can supports the evolution of the phenotype of the left ventricle into the right ventricle phenotype through the travel history of heart failure. Next, we will discuss fenoitp pulmonary hypertension by combining the clinical context, the assessment of non-invasive and invasive hemodynamic variables in a structured diagnostic assessment.


Circulation ◽  
2011 ◽  
Vol 124 (2) ◽  
pp. 164-174 ◽  
Author(s):  
Marco Guazzi ◽  
Marco Vicenzi ◽  
Ross Arena ◽  
Maurizio D. Guazzi

2021 ◽  
Vol 25 (3) ◽  
pp. 83-96
Author(s):  
O. M. Zherko ◽  
E. I. Shkrebneva

The aim of the study was to develop a score scale for assessing the high risk of establishing chronic heart failure with preserved ejection fraction (HFpEF), based on echocardiography (EchoCG) evidence.Materials and methods. A clinical and instrumental study of 175 patients, of which 108 (61.7%) women and 67 (38.3%) men, aged 71 [64; 78] years was performed in the 1st City Clinical Hospital in Minsk in 2017–2018. In order to validate the score scale for assessing the risk of HFpEF establishment in 2019–2020 a reproductive clinical and instrumental study of 129 patients was performed at the Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, of which 55 (42.6%) were men and 74 (57.4%) women aged 65 [58; 70] years. Inclusion criteria: sinus rhythm, essential arterial hypertension, chronic coronary heart disease: atherosclerotic heart disease, past myocardial infarction of left ventricle (LV), after which at least six months have passed, necessary to stabilize the structural and functional parameters of the LV, HFpEF, informed consent of the patient. Exclusion criteria: primary mitral regurgitation, mitral stenosis, mitral valve repair or prosthetics, congenital heart defects, acute and chronic diseases of the kidneys, lungs. EchoCG was performed on ultrasound machines Siemens Acuson S1000 (Germany) and Vivid E9 (GE Healthcare, USA).Results. The developed scale for assessing the risk of establishing HFpEF in a patient with sinus rhythm including the criteria: LV diastolic dysfunction type II – 47 points, deceleration time of peak E of the transmitral blood flow DTE ≤171 ms – 25 points, the speed of early diastolic movement of the septal part of the mitral fibrous ring e'septal ≤7 cm/s – 25 points, LV early diastolic filling index E/е'septal >7.72 – 20 points, index of the end-systolic volume of the left atrium >34.3 ml/m2 – 24 points, has high diagnostic reliability (AUC 0.96, sensitivity (S) 96.6%, specificity (Sp) 83.2%) and reproducibility of results in an examination cohort of patients (AUC 0.99, S 98.8%, Sp 98.0%). A total score > 45 indicates a high probability of HFpEF. If the total score is ≤45, it is recommended to perform 2D Speckle Tracking EchoCG. The leading patho-functional mechanisms for the development of HFpEF are a decrease of LV global systolic longitudinal strain GLSAVG > −18.9% (S 94.9%, Sp 98.0%), GLS of the right ventricle (RV) > −19.9% (S 76.5%, Sp 88.5%), mechanical dispersion with LV mechanical dispersion index > 54.69 ms (S 70.7%, Sp 90.2%), RV mechanical dispersion index > 50.29 msec (S 78.1%, Sp 73.9%) and ventricular dyssynergy with LV global post systolic index >5.59% (S 82.6%, Sp 87.5%), RV global post systolic index > 2.17% (S 84.5%, Sp 69.9%).Conclusions. The use of the developed scale will improve the efficiency of ultrasound imaging of HFpEF.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julian Müller ◽  
Mona Lichtblau ◽  
Stéphanie Saxer ◽  
Luigi-Riccardo Calendo ◽  
Arcangelo F. Carta ◽  
...  

Objective: To evaluate the effects of breathing oxygen-enriched air (oxygen) on exercise performance in patients with pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF).Methods: Ten patients with PH-HFpEF (five women, age 60 ± 9 y, mPAP 37 ± 14 mmHg, PAWP 18 ± 2 mmHg, PVR 3 ± 3 WU, resting SpO2 98 ± 2%) performed two-cycle incremental exercise tests (IET) and two constant-work-rate exercise test (CWRET) at 75% maximal work-rate (Wmax), each with ambient air (FiO2 0.21) and oxygen (FiO2 0.5) in a randomized, single-blinded, cross-over design. The main outcomes were the change in Wmax (IET) and cycling time (CWRET) with oxygen vs. air. Blood gases at rest and end-exercise, dyspnea by Borg CR10 score at end-exercise; continuous SpO2, minute ventilation (V'E), carbon dioxide output (V'CO2), and cerebral and quadricep muscle tissue oxygenation (CTO and QMTO) were measured.Results: With oxygen vs. air, Wmax (IET) increased from 94 ± 36 to 99 ± 36 W, mean difference (95% CI) 5.4 (0.9–9.8) W, p = 0.025, and cycling time (CWRET) from 532 ± 203 to 680 ± 76 s, +148 (31.8–264) s, p = 0.018. At end-exercise with oxygen, Borg dyspnea score and V'E/V'CO2 were lower, whereas PaO2 and end-tidal PaCO2 were higher. Other parameters were unchanged.Conclusion: Patients with PH-HFpEF not revealing resting hypoxemia significantly improved their exercise performance while breathing oxygen-enriched air along with less subjective dyspnea sensation, a better blood oxygenation, and an enhanced ventilatory efficiency. Future studies should investigate whether prolonged training with supplemental oxygen would increase the training effect and, potentially, daily activity for PH-HFpEF patients.Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT04157660].


Sign in / Sign up

Export Citation Format

Share Document