scholarly journals Fast-track strategy for the prevention of Hb Bart’s hydrops fetalis syndrome

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Narutchala Suwannakhon ◽  
Khajohnsilp Pongsawatkul ◽  
Teerapat Seeratanachot ◽  
Wirawan Rasri ◽  
Khwanruedee Mahingsa ◽  
...  

We propose a fast-track strategy [direct blood DNA analysis using a quantitative real-time polymerase chain reaction (PCR) technique] for the early risk detection and prenatal diagnosis of α(0)-thalassemia (SEA and Thai deletion). Blood DNA samples were obtained from a volunteer group of 1235 ANC couples. They were assessed using quantitative real-time PCR to detect carriers of α(0)-thalassemia (SEA and Thai deletion). At-risk couples were identified, and further prenatal diagnosis by amniocentesis was implemented. Fetal DNA was isolated from the amniotic cells and characterized by quantitative real-time PCR to detect the α(0)-thalassemia mutation, which was reconfirmed using the droplet digital PCR method. Fifteen at-risk couples were identified. The timing of prenatal diagnosis was appropriate for all couples and four of the fetuses were diagnosed with Bart’s hydrops fetalis. The results were compatible with those calculated using the Hardy-Weinberg equation for a recessively inherited single gene disorder. The conclusion was that the fast-track strategy could shorten screening policy timelines, promoting early risk detection for couples and early prenatal diagnosis. The fast-track strategy might be beneficial for the prevention of hemoglobin Bart’s hydrops fetalis syndrome. 针对 α(0) 地中海贫血(东南亚和泰国类型的贫血)的早期风险检测和产前诊断,我们提出了一种快速跟踪方法:使用定量实时聚合酶链反应 (PCR),进行直接血液 DNA 分析。血液 DNA 样本取自 1,235 对 ANC 夫妇的志愿者组。使用定量实时 PCR 对其进行评估,以检测 α(0) 地中海贫血(东南亚和泰国类型的贫血)的载体。确定危险群夫妇之后,实施羊膜穿刺术,进行进一步的产前诊断。从羊膜细胞中分离出胎儿 DNA,使用定量实时 PCR 进行特征标度,以检测 α(0) 地中海贫血突变,然后使用液滴数字 PCR 法再次确认。共确定出十五对危险群夫妇。产前诊断这一时机适用于所有夫妇,其中四例胎儿确诊为巴特水肿胎儿。我们使用 Hardy-Weinberg 方程式来计算隐性遗传单基因疾病,结果一致。结论是,此快速跟踪方法可以缩短筛选策略时间表、方便夫妇进行早期风险检测、便于早期产前诊断。此快速跟踪方法或有利于预防血红蛋白巴特水肿胎儿综合征。

2009 ◽  
Vol 25 (2) ◽  
pp. 220-223 ◽  
Author(s):  
Sanaa M.H. Helmy ◽  
Somaya Ismail ◽  
Randa Bassiouni ◽  
Khaled R. Gaber

2004 ◽  
Vol 24 (9) ◽  
pp. 704-707 ◽  
Author(s):  
Yali Hu ◽  
Mingming Zheng ◽  
Zhengfeng Xu ◽  
Xinru Wang ◽  
Hengmi Cui

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


Open Medicine ◽  
2007 ◽  
Vol 2 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Koray Ergunay ◽  
Gulcin Altinok ◽  
Bora Gurel ◽  
Ahmet Pinar ◽  
Arzu Sungur ◽  
...  

AbstractIntrauterine Parvovirus B19 infections may cause fetal anemia, non-immune hydrops fetalis or abortion. This study focuses on the pathogenic role of Parvovirus B19 in non-immune hydrops fetalis at Hacettepe University, a major reference hospital in Turkey. Twenty-two cases of non-immune hydrops fetalis were retrospectively selected out of a total of 431 hydrops fetalis specimens from the Department of Pathology archieves. Paraffine embedded tissue sections from placental and liver tissues from each case were evaluated by histopathology, immunohistochemistry, nested PCR and commercial quantitative Real-time PCR. Viral DNA was detected in placental tissues by Real-time PCR in 2 cases (2/22, 9.1%) where histopathology also revealed changes suggestive of Parvovirus B19 infection. No significant histopathologic changes were observed for the remaining sections. Nested PCR that targets the VP1 region of the viral genome and immunohistochemistry for viral capsid antigens were negative for all cases. As a result, Parvovirus B19 is identified as the etiologic agent for the development of non-immune hydrops fetalis for 9.1% of the cases in Hacettepe University, Turkey. Real-time PCR is observed to be an effective diagnostic tool for nucleic acid detection from paraffine embedded tissues. Part of this study was presented as a poster at XIIIth International Congress of Virology, San Francisco, USA (Abstract V-572).


2008 ◽  
Vol 375 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Cheng Xin Yi ◽  
Jun Zhang ◽  
Ka Man Chan ◽  
Xiao Kun Liu ◽  
Yan Hong

2011 ◽  
Vol 50 (3) ◽  
pp. 948-952 ◽  
Author(s):  
J.-F. Jazeron ◽  
C. Barbe ◽  
E. Frobert ◽  
F. Renois ◽  
D. Talmud ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sanaz Dehbashi ◽  
Hamed Tahmasebi ◽  
Behrouz Zeyni ◽  
Mohammad Reza Arabestani

Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. Results Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. Conclusion We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.


Sign in / Sign up

Export Citation Format

Share Document