scholarly journals Correlation of Shoulder and Elbow Kinetics With Ball Velocity in Collegiate Baseball Pitchers

2015 ◽  
Vol 50 (6) ◽  
pp. 629-633 ◽  
Author(s):  
Eric G. Post ◽  
Kevin G. Laudner ◽  
Todd A. McLoda ◽  
Regan Wong ◽  
Keith Meister

Context Throwing a baseball is a dynamic and violent act that places large magnitudes of stress on the shoulder and elbow. Specific injuries at the elbow and glenohumeral joints have been linked to several kinetic variables throughout the throwing motion. However, very little research has directly examined the relationship between these kinetic variables and ball velocity. Objective To examine the correlation of peak ball velocity with elbow-valgus torque, shoulder external-rotation torque, and shoulder-distraction force in a group of collegiate baseball pitchers. Design Cross-sectional study. Setting Motion-analysis laboratory. Patients or Other Participants Sixty-seven asymptomatic National Collegiate Athletic Association Division I baseball pitchers (age = 19.5 ± 1.2 years, height = 186.2 ± 5.7 cm, mass = 86.7 ± 7.0 kg; 48 right handed, 19 left handed). Main Outcome Measure(s) We measured peak ball velocity using a radar gun and shoulder and elbow kinetics of the throwing arm using 8 electronically synchronized, high-speed digital cameras. We placed 26 reflective markers on anatomical landmarks of each participant to track 3-dimensional coordinate data. The average data from the 3 highest-velocity fastballs thrown for strikes were used for data analysis. We calculated a Pearson correlation coefficient to determine the associations between ball velocity and peak elbow-valgus torque, shoulder-distraction force, and shoulder external-rotation torque (P < .05). Results A weak positive correlation was found between ball velocity and shoulder-distraction force (r = 0.257; 95% confidence interval [CI] = 0.02, 0.47; r2 = 0.066; P = .018). However, no significant correlations were noted between ball velocity and elbow-valgus torque (r = 0.199; 95% CI = −0.043, 0.419; r2 = 0.040; P = .053) or shoulder external-rotation torque (r = 0.097; 95% CI = −0.147, 0.329; r2 = 0.009; P = .217). Conclusions Although a weak positive correlation was present between ball velocity and shoulder-distraction force, no significant association was seen between ball velocity and elbow-valgus torque or shoulder external-rotation torque. Therefore, other factors, such as improper pitching mechanics, may contribute more to increases in joint kinetics than peak ball velocity.

2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0042
Author(s):  
Donna Moxley Scarborough ◽  
Shannon E. Linderman ◽  
Javier E. Sanchez ◽  
Eric M. Berkson

Objectives: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitch, provides insight to segment position and motion control that drives the kinetic chain (Putnam CA, 1993). Previous publications report an ideal kinematic sequence (KS) where the timing of each body segment’s peak angular velocity occurs in a proximal-to-distal (PDS) pattern resulting in greater ball velocity and reduction in throwing arm injury risk (Fortenbaugh D, et.al, 2009). A recent study revealed that baseball pitchers perform a variety of KSs (Scarborough DM et.al, 2018). There is no known investigation of the relationship of kinematic sequences and throwing arm joint torques. The purpose of this study was to 1) identify the number of different KSs performed by each pitcher and 2) compare elbow valgus and shoulder external rotation (ER) and extension (Ext) torques between the 3 primary KSs performed during the fastball pitch. Methods: Fourteen collegiate baseball pitchers (20.57 ± 1.91 yr) underwent 3D biomechanical pitch analysis using 20 motion-capture Vicon MX™ cameras (360 Hz). A total of 119 fastball pitches with an average of 8.5 ± 2.71 pitches per player were analyzed. Elbow valgus and shoulder external rotation and extension torques were calculated. The timing of peak angular velocities for the pelvis, trunk, arm, forearm and hand body segments were recorded to generate each pitch’s KS. KSs were then divided into groups based on similarities to the ideal PDS pattern. ANCOVA statistical analyses were performed to compare joint torques across these KS groups with ball velocity as a covariate. Results: A total of 13 different KSs were observed across the 14 pitchers resulting in an average of 3 ± 1.41 different KSs per pitcher. Three different primary KS groups were identified: (1) PDS group: with a KS closest to the ideal PDS pattern (2) the Altered Distal Upper Extremity segment: with the forearm peaking after the hand (the most common group) and (3) Altered Proximal Upper Extremity segment order with the arm segment peaking after the hand (2nd most common). Across these three primary KS patterns, statistically significant differences were noted for elbow valgus torque [F(62,2) = 8.785, ɳ2 = .221, p < 0.00], shoulder external rotation (ER) torque [F(62,2) = 14.127, ɳ2 = .313, p < 0.00] and shoulder extension (Ext) torque [F(62,2) = 13.237, ɳ2 = .299, p < 0.00] (Figure 1). Conclusion: Our findings demonstrate that collegiate baseball pitchers performed an average of 3 different kinematic sequence patterns during fastball pitching. This is the first study to demonstrate a relationship between KSs and elbow and shoulder torque production. As anticipated, the PDS KSs produced the least torque across the elbow and shoulder joints. Alterations in Distal Upper Extremity KS was most common and generated the greatest shoulder Ext torques. Alterations in the Proximal Upper Extremity KS demonstrated the greatest elbow valgus and shoulder ER. Further study of the influence of kinematic sequence on joint torques in the baseball pitch may provide insight into pitching injuries and injury avoidance programs.


2021 ◽  
pp. 175857322110103
Author(s):  
Joseph E Manzi ◽  
Brittany Dowling ◽  
Nicolas Trauger ◽  
Michael C Fu ◽  
Benjamin R Hansen ◽  
...  

Background The relationships between shoulder abduction and external rotation with peak kinetic values at the shoulder and elbow in professional baseball pitchers are not well established. Methods Professional pitchers ( n = 322) threw 8–12 fastballs under 3D motion analysis (480 Hz). Pitchers were stratified into quartiles by shoulder abduction and external rotation at distinct timepoints. Regression analyses were performed to quantify associations between shoulder position and kinetics. Results Shoulder abduction remained relatively consistent throughout the pitch (foot contact–ball release: 85.5 ± 11.1–90.7 ± 8.4°); shoulder external rotation increased dramatically (foot contact–ball release: 30.8 ± 24.6–165.2 ± 9.7°). For every 10° increase in maximum shoulder rotation, shoulder superior force increased by 2.3% body weight ( p < 0.01), shoulder distraction force increased by 5.9% body weight ( p < 0.01), and ball velocity increased by 0.60 m/s ( p < 0.01). Shoulder abduction was significantly associated with shoulder superior force at all timepoints but not with ball velocity ( p > 0.05). For every 10° increase in shoulder abduction at ball release, shoulder superior force increased by 3.7% body weight ( p < 0.01) and shoulder distraction force increased by 11.7% body weight ( p < 0.01). Conclusion Increased shoulder abduction at ball release and increased maximum shoulder external rotation were associated with greater superior and distraction forces in the shoulder. Pitchers can consider decreasing shoulder abduction at later stages of the pitch to around 80° in order to minimize shoulder superior force, with no impact on ball velocity.


2005 ◽  
Vol 33 (11) ◽  
pp. 1716-1722 ◽  
Author(s):  
Michelle B. Sabick ◽  
Young-Kyu Kim ◽  
Michael R. Torry ◽  
Michael A. Keirns ◽  
Richard J. Hawkins

Background The effects of repetitive throwing on the shoulders of developing athletes are not well understood because of the paucity of data describing the biomechanics of youth pitchers and the plasticity of the developing skeleton. Hypothesis The direction and magnitude of the stresses that exist at the proximal humeral physis during the fastball pitching motion are consistent with the development of proximal humeral epiphysiolysis (Little League shoulder) and/or humeral retrotorsion. Study Design Descriptive laboratory study. Methods A total of 14 elite youth baseball pitchers (mean age, 12.1 ± 0.4 years) were filmed from the front and dominant side while throwing fastballs in a simulated game. The net force and torque acting on the humerus throughout the throwing motion were calculated using standard biomechanical techniques. Results The external rotation torque about the long axis of the humerus reached a peak value of 17.7 ± 3.5 N.m (2.7% ± 0.3% body weight × height) just before maximum shoulder external rotation. A shoulder distraction force of 214.7 ± 47.2 N (49.8% ± 8.3% body weight) occurred at, or just after, ball release. Conclusion Shear stress arising from the high torque late in the arm-cocking phase is large enough to lead to deformation of the weak proximal humeral epiphyseal cartilage, causing either humeral retrotorsion or proximal humeral epiphysiolysis over time. The stresses generated by the external rotation torque are much greater than those caused by distraction forces generated during the pitching motion of youth baseball pitchers. Clinical Relevance The motion of throwing fastballs by youth baseball pitchers results in force components consistent with proposed mechanisms for 2 clinical entities.


2021 ◽  
pp. 036354652110413
Author(s):  
Joseph E. Manzi ◽  
Brittany Dowling ◽  
Joshua S. Dines ◽  
Alexander Richardson ◽  
Kathryn L. McElheny ◽  
...  

Background: Inefficient energy transfer from the pelvis and trunk has been shown to increase compensation at the level of the shoulder. Kinetic chain sequencing of the core segments is underexamined in professional baseball pitchers, especially as it relates to changes in upper extremity kinetics. Purpose: To evaluate elbow and shoulder kinetics in a cohort of professional pitchers differentiated by instances of discordant pelvic to upper torso sequencing during the pitch. Study Design: Descriptive laboratory study. Methods: 285 professional baseball pitchers were evaluated using 3D motion capture (480 Hz). Pitchers were divided into “chronological” and “discordant” groups based on whether maximum pelvic rotation velocity occurred before (chronological) or after (discordant) maximum upper torso rotation velocity during the pitch motion. Pelvic, upper torso, and shoulder kinematic parameters, shoulder distraction force, shoulder internal rotation torque, and pitch efficiency (PE) were compared between groups. Results: Pitchers with discordant torso sequencing (n = 30; 110 pitches) had greater shoulder horizontal adduction at maximum external rotation (mean difference, 3.6°; 95% CI, −5.2° to −2.0°; t = −4.5; P < .001) and greater maximum shoulder external rotation (mean difference, 3.7°; 95% CI, 5.7° to 1.5°; t = −3.5; P < .001) than chronological pitchers (n = 255; 2974 pitches). PE did not differ between groups ( P = .856), whereas ball velocity was significantly faster in the discordant group (mean difference, 0.6 m/s; 95% CI, −1.1 to −0.3 m/s; t = −3.3; P = .0012). Chronological pitchers had significantly reduced shoulder distraction force (mean difference, −4.7% body weight (BW); 95% CI, −7.9% to −1.5% BW; t = −2.9; P = .004) with no difference in shoulder internal rotation torque ( P = .160). These kinematic and kinetic differences were not observed when accounting for interpitcher variability. Conclusion: Between pitchers, those who had a discordant pelvic to upper torso sequence experienced significantly greater shoulder distraction forces, potentially compensating by increasing maximum shoulder external rotation and horizontal abduction. Achieving maximal pelvic rotation velocity before maximal rotation velocity may be advantageous in preventing compensation at the upper extremity and excessive throwing arm loading. Clinical Relevance: Identifying risk factors for increased upper extremity forces has potential implications in injury prevention. Specifically, mitigating shoulder distraction forces may be beneficial in reducing risk of injury.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0012
Author(s):  
Arne Burssens ◽  
Nicola Krähenbühl ◽  
Hannes Vermue ◽  
Nathan Davidson ◽  
Maxwell Weinberg ◽  
...  

Category: Ankle Introduction/Purpose: Syndesmotic ankle injuries are challenging to diagnose, since current 2D imaging techniques try to quantify a 3D displacement. Therefore, our aim was two-fold: to determine displacement of sequential syndesmotic ankle injuries under various amounts of load using a 3D weightbearing CT (WBCT) and to assess the relation with current 2D imaging. Methods: Seven paired male cadaver specimens were included (tibia plateau to toe-tip) and mounted into a custom-built frame. WBCT scans were obtained after different patterns of load (0 kg or 85 kg) were combined with torque (0 Nm or 10 Nm external rotation). These conditions were repeated after each ligament condition: intact ligaments, sequential sectioning of the anterior inferior tibiofibular ligament (AITFL), deltoid ligament (DL), and interosseous membrane (IOM). CT images were segmented to obtain 3D models. These allowed quantification of displacement based on the position of computed anatomical landmarks in reference to the intact position of the fibula. A correlation analysis was performed between the 2D and 3D measurements. Results: The effect of torque caused significant displacements in all directions (P<0.05), except for shortening of the fibula (P>0.05). Weight caused a significant lateral (mean=-1.4 mm, SD=1.5) and posterior translation (mean=-0.6 mm, SD=1.8). The highest displacement consisted of external rotation (mean=-9.4°, SD=6.5) and posterior translation (mean=6.1 mm, SD=2.3) after IOL sectioning combined with torque (Fig. 1). Pearson correlation coefficients were moderate (range 0.31-0.51, P<0.05). Conclusion: Torque demonstrated superiority over weight in detecting syndesmotic ankle instability after 3D analysis. The clinical relevance of these findings can improve diagnosis by incorporating rotatory platforms during imaging and treatment strategies by providing appropriate stabilization against rotation.


2021 ◽  
Author(s):  
Daisuke Momma ◽  
Alejandro A Espinoza Orías ◽  
Tohru Irie ◽  
Tomoyo Irie ◽  
Eiji Kondo ◽  
...  

Abstract The purpose of this study is to evaluate the glenohumeral contact area, center of glenohumeral contact area, and center of humeral head during simulated pitching motion in collegiate baseball pitchers using four-dimensional computed tomography (4D CT). We obtained 4D CT data from the dominant and non-dominant shoulders of eight collegiate baseball pitchers during the cocking motion. CT image data of each joint were reconstructed using a 3D reconstruction software package. The glenohumeral contact area, center of glenohumeral contact area, center of humeral head, and oblateness of humeral head were calculated from 3D bone models using customized software. The center of glenohumeral contact area translated significantly from anterior to posterior during maximum external rotation to maximum internal rotation. The center of humeral head translated from posterior to anterior during maximum external rotation to maximum internal rotation. There was a high negative correlation between anterior translation of the center of glenohumeral contact area and center of humeral head, and a positive correlation between the translation and the oblateness. 4D CT analyses demonstrated that the center of humeral head translated in the opposite direction to that of the center of glenohumeral contact area during external rotation to internal rotation in abduction in the dominant and non-dominant shoulders. This diametric translation can be explained by the oblateness of the humeral head. 4D CT scanning and the software for bone surface modeling of the glenohumeral joint enabled quantitative assessment of glenohumeral micromotion and identified humeral head oblateness as the cause of diametric change.


Author(s):  
Maxwell L. Albiero ◽  
Wesley Kokott ◽  
Cody Dziuk ◽  
Janelle A. Cross

Abstract Context: Inadequate hip active range of motion (AROM) may stifle the energy flow through the kinematic chain and decrease pitching performance while increasing the risk for pitcher injury. Objective: To examine the relationship of hip AROM and pitching biomechanics during a fastball pitch in adolescent baseball pitchers. Design: Cross-Sectional study. Setting: Biomechanics laboratory. Participants: A voluntary sample of 21 adolescent baseball pitchers (16.1 ± 0.8 yrs.; 183.9 ± 5.2 cm; 77.9 ± 8.3 kg). Main Outcome Measure (s): Bilateral hip internal rotation (IR), external rotation (ER), flexion, extension, and abduction AROM were measured. Three-dimensional biomechanics were assessed as participants threw from an indoor pitching mound to a strike zone net at regulation distance. Pearson correlation coefficients were used to determine correlations between hip AROM and biomechanical metrics. Results: Statistically significant negative correlations were found at foot contact between back hip ER AROM and back hip abduction angle (p=0.030, r=−0.474), back hip ER AROM and torso rotation angle (p=0.032, r=−0.468),and back hip abduction AROM and lead hip abduction angle (p=0.037, r=−0.458). Back hip extension AROM was positively correlated with increased stride length (p=0.043, r=0.446). Lead hip abduction AROM was also positively correlated with normalized elbow varus torque (p=0.034, r=0.464). Conclusions: There were several relationships between hip AROM and biomechanical variables during the pitching motion. The findings support the influence hip AROM can have on pitching biomechanics. Overall, greater movement at the hips allows for the kinematic chain to work at its maximal efficiency, increasing pitch velocity potential.


2021 ◽  
Vol 49 (12) ◽  
pp. 3386-3394
Author(s):  
Joseph E. Manzi ◽  
Brittany Dowling ◽  
Zhaorui Wang ◽  
Kyle N. Kunze ◽  
Jennifer Estrada ◽  
...  

Background: Understanding the relationship between the temporal phases of the baseball pitch and subsequent joint loading may improve our understanding of optimal pitching mechanics and contribute to injury prevention in baseball pitchers. Purpose: To investigate the temporal phases of the pitching motion and their associations with ball velocity and throwing arm kinetics in high school (HS) and professional (PRO) baseball pitchers. Study Design: Descriptive laboratory study. Methods: PRO (n = 317) and HS (n = 54) baseball pitchers were evaluated throwing 8 to 12 fastball pitches using 3-dimensional motion capture (480 Hz). Four distinct phases of the pitching motion were evaluated based on timing of angular velocities: (1) Foot-Pelvis, (2) Pelvis-Torso, (3) Torso-Elbow, and (4) Elbow-Ball. Peak elbow varus torque, shoulder internal rotation torque, and shoulder distraction force were also calculated and compared between playing levels using 2-sample t tests. Linear mixed-effect models with compound symmetry covariance structures were used to correlate pitch velocity and throwing arm kinetics with the distinct temporal phases of the pitching motion. Results: PRO pitchers had greater weight and height, and faster ball velocities than HS pitchers ( P < .001). There was no difference in total pitch time between groups ( P = .670). PRO pitchers spent less time in the Foot-Pelvis ( P = .010) and more time in the Pelvis-Torso ( P < .001) phase comparatively. Shorter time spent in the earlier phases of the pitching motion was significantly associated with greater ball velocity for both PRO and HS pitchers (Foot-Pelvis: B = −6.4 and B = −11.06, respectively; Pelvis-Torso: B = −6.4 and B = −11.4, respectively), while also associated with increased shoulder proximal force (Pelvis-Torso: B = −76.4 and B = −77.5, respectively). Decreased time in the Elbow-Ball phase correlated with greater shoulder proximal force for both cohorts (B = −1150 and B = −645, respectively) with no significant correlation found for ball velocity. Conclusion: Significant differences in temporal phases exist between PRO and HS pitchers. For all pitchers, increased time spent in the final phase of the pitching motion has the potential to decrease shoulder distraction force with no significant loss in ball velocity. Clinical Relevance: Identifying risk factors for increased shoulder and elbow kinetics, acting as a surrogate for loading at the respective joints, has potential implications in injury prevention.


2021 ◽  
Vol 3 ◽  
Author(s):  
Donna Moxley Scarborough ◽  
Pablo E. Colón ◽  
Shannon E. Linderman ◽  
Eric M. Berkson

Performance of a sequential proximal-to-distal transfer of segmental angular velocity (or Kinematic Sequence) is reported to reduce stress on musculoskeletal structures and thus the probability of injury while also maximizing ball velocity. However, there is limited investigation regarding the Kinematic Sequence of the five body segments (Pelvis, Trunk, Arm, Forearm, and Hand) among baseball pitchers. Some biomechanical and epidemiology studies have reported an association of the curveball with increased risk for elbow injury among youth pitchers. Kinematic Sequences with altered distal upper extremity (forearm and hand) sequences have been associated with greater elbow valgus and shoulder external rotation torques compared to other Kinematic Sequences. Identifying Kinematic Sequence patterns during curveball pitches may lead to improved understanding of injury susceptibility. This study investigated the Kinematic Sequence patterns (and their variability) during curveball pitching and compared them to the sequences identified during fastball pitches. Using 3D motion analyses, 14 baseball pitchers (four high school, eight college, and two professional) performed 5–6 curveball pitches and 12 pitchers also threw fastball pitches in a simulated bullpen session. Eleven different curveball Kinematic Sequences were identified and 8 fastball Kinematic Sequences. There was no significant variability in the number of Kinematic Sequences performed between the two pitch types, (Z = −0.431, p = 0.67). The median number of KSs performed by each group was 2.5. The most frequently used Kinematic Sequences for both pitch types were due to alteration in the sequence of the distal segments. The total percentage of Kinematic Sequences with altered distal segment sequencing for the curveball pitches was 49% and 43% for fastball pitches. Identifying the frequency of Kinematic Sequences with altered timing of hand and forearm peak velocities across pitch types may lead to a better understanding of the stresses that individual pitchers incur.


Sign in / Sign up

Export Citation Format

Share Document