scholarly journals Custom-Molded Foot-Orthosis Intervention and Multisegment Medial Foot Kinematics During Walking

2011 ◽  
Vol 46 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Stephen C. Cobb ◽  
Laurie L. Tis ◽  
Jeffrey T. Johnson ◽  
Yong “Tai” Wang ◽  
Mark D. Geil

Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Intervention(s): After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might partially correct dys-functional kinematic patterns associated with low-mobile foot postures.

2020 ◽  
Vol 10 (21) ◽  
pp. 7811
Author(s):  
Alessandra B. Matias ◽  
Paolo Caravaggi ◽  
Ulisses T. Taddei ◽  
Alberto Leardini ◽  
Isabel C. N. Sacco

Different location and incidence of lower extremity injuries have been reported in rearfoot strike (RFS) and forefoot strike (FFS) recreational runners. These might be related to functional differences between the two footstrike patterns affecting foot kinematics and thus the incidence of running injuries. The aim of this study was to investigate and compare the kinematic patterns of foot joints between naturally RFS and FFS runners. A validated multi-segment foot model was used to measure 24 foot kinematic variables in long-distance recreational runners while running on a treadmill. These variables included the three-dimensional relative motion between rearfoot, midfoot, and forefoot segments. The footstrike pattern was identified using kinematic data and slow-motion videos. Functional analysis of variance was used to compare the time series of these variables between RFS (n = 49) and FFS (n = 25) runners. In FFS runners, the metatarsal bones were less tilted with respect to the ground, and the metatarsus was less adducted with respect to the calcaneus during stance. In early stance, the calcaneus was more dorsiflexed with respect to the shank and returned to a more plantarflexed position at push-off. FFS runners showed a more adducted calcaneus with respect to the shank and a less inverted midfoot to the calcaneus. The present study has showed that the footstrike angle characterizes foot kinematics in running. These data may help shed more light on the relationship between foot function and running-related injuries.


2006 ◽  
Vol 96 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Bart Van Gheluwe ◽  
Howard J. Dananberg ◽  
Friso Hagman ◽  
Kerstin Vanstaen

The effects of hallux limitus on plantar foot pressure and foot kinematics have received limited attention in the literature. Therefore, a study was conducted to assess the effects of limited first metatarsophalangeal joint mobility on plantar foot pressure. It was equally important to identify detection criteria based on plantar pressures and metatarsophalangeal joint kinematics, enabling differentiation between subjects affected by hallux limitus and people with normal hallux function. To further our understanding of the relation between midtarsal collapse and hallux limitus, kinematic variables relating to midtarsal pronation were also included in the study. Two populations of 19 subjects each, one with hallux limitus and the other free of functional abnormalities, were asked to walk at their preferred speed while plantar foot pressures were recorded along with three-dimensional foot kinematics. The presence of hallux limitus, structural or functional, caused peak plantar pressure under the hallux to build up significantly more and at a faster rate than under the first metatarsal head. Additional discriminators for hallux limitus were peak dorsiflexion of the first metatarsophalangeal joint, time to this peak value, peak pressure ratios of the first metatarsal head and the more lateral metatarsal heads, and time to maximal pressure under the fourth and fifth metatarsal heads. Finally, in approximately 20% of the subjects, with and without hallux limitus, midtarsal pronation occurred after heel lift, validating the claim that retrograde midtarsal pronation does occur. (J Am Podiatr Med Assoc 96(5): 428–436, 2006)


2013 ◽  
Vol 103 (5) ◽  
pp. 394-399 ◽  
Author(s):  
Alfred Gatt ◽  
Nachiappan Chockalingam ◽  
Owen Falzon

Background: Although assessment of passive maximum foot dorsiflexion angle is performed routinely, there is a paucity of information regarding adolescents’ foot and foot segment motion during this procedure. There are currently no trials investigating the kinematics of the adolescent foot during passive foot dorsiflexion. Methods: A six-camera optoelectronic motion capture system was used to collect kinematic data using the Oxford Foot Model. Eight female amateur gymnasts 11 to 16 years old (mean age, 13.2 years; mean height, 1.5 m) participated in the study. A dorsiflexing force was applied to the forefoot until reaching maximum resistance with the foot placed in the neutral, pronated, and supinated positions in random order. The maximum foot dorsiflexion angle and the range of movement of the forefoot to hindfoot, tibia to forefoot, and tibia to hindfoot angles were computed. Results: Mean ± SD maximum foot dorsiflexion angles were 36.3° ± 7.2° for pronated, 36.9° ± 4.0° for neutral, and 33.0° ± 4.9° for supinated postures. One-way repeated-measures analysis of variance results were nonsignificant among the 3 groups (P = .70), as were the forefoot to tibia angle and hindfoot to tibia angle variations (P = .091 and P = .188, respectively). Forefoot to hindfoot angle increased with the application of force, indicating that in adolescents, the forefoot does not lock at any particular posture as portrayed by the traditional Rootian paradigm. Conclusions: Participants had very flexible foot dorsiflexion, unlike those in another study assessing adolescent athletes. This finding, together with nonsignificant statistical results, implies that foot dorsiflexion measurement may be performed at any foot posture without notably affecting results. (J Am Podiatr Med Assoc 103(5): 394–399, 2013)


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lei Zhang ◽  
Junqiu Wang ◽  
Jiaju Liu ◽  
Jiangqin Luo

The hallucal sesamoid bones (HSBs), having an important role in reducing load per unit area on the first metatarsal head, can be injured commonly which also affected the first metatarsophalangeal joint and the surrounding structure. Meanwhile, differences among each HSB type may be a major factor affecting the occurrence and development of HV. So far, many researchers had learned that there are three different conditions in hallucal sesamoid bone affecting the choice of clinical surgery corresponding to different solutions in clinic. Thus, it is necessary to study the anatomical morphological characteristics of the HSB which can be helpful in clinical diagnosis and treatment, especially hallux valgus (HV). 150 X-ray and three-dimensional (3D) computed tomographic (CT) images consist of 72 left and 78 right metatarsals were applied in this anatomic study between two variables and showed by a simple scatter plot. The first metatarsophalangeal joint is divided into four different types: type I (no HSB, 1.3%), type II (with one HSB, 0.07%), type IIIa (with two HSBs when THB is bigger, 28%), type IIIb (with two HSBs when FHB is bigger, 65.3%), and type IV (with three HSBs, 4.7%). There was no statistical difference between the left and right sides, except HVA, Meary, and pitch (P<0.05); all a, b, c, d, and i have statistical difference between male and female (P<0.05). Meanwhile, HVA and IMA and HVA and type group have a significant correlation. In summary, HVA and IMA and HVA and classification of HSBs have significant correlations. The classification and location of HSBs can be an important basis to choose operation methods and postoperation evaluation.


Author(s):  
Ying Yue Zhang ◽  
Gusztáv Fekete ◽  
Justin Fernandez ◽  
Yao Dong Gu

To determine the influence of the unstable sole structure on foot kinematics and provide theoretical basis for further application.12 healthy female subjects walked through a 10-meter experimental channel with normal speed wearing experimental shoes and control shoes respectively at the gait laboratory. Differences between the groups in triplanar motion of the forefoot, rearfoot and hallux during walking were evaluated using a three-dimensional motion analysis system incorporating with Oxford Foot Model (OFM). Compare to contrast group, participants wearing experimental shoes demonstrated greater peak forefoot dorsiflexion, forefoot supination and longer halluces plantar flexion time in support phase. Additionally, participants with unstable sole structure also demonstrated smaller peak forefoot plantarflexion, rearfoot dorsiflexion and range of joint motion in sagittal plane and frontal plane.. The difference mainly appeared in sagittal and frontal plane. With a stimulation of unstable, it may lead to the reinforcement of different flexion between middle and two ends of the foot model. The greater forefoot supination is infered that the unstable element structure may affect the forefoot motion on the frontal plane and has a control effect to strephexopodia people. The stimulation also will reflexes reduce the range of rearfoot motion in sagittal and frontal planes to control the gravity center of the body and keep a steady state in the process of walking.


2006 ◽  
Vol 96 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Vanessa L. Nubé ◽  
Lynda Molyneaux ◽  
Dennis K. Yue

In this study of people with diabetes mellitus and peripheral neuropathy, it was found that the feet of patients with a history of hallux ulceration were more pronated and less able to complete a single-leg heel rise compared with the feet of patients with a history of ulceration elsewhere on the foot. The range of active first metatarsophalangeal joint dorsiflexion was found to be significantly lower in the affected foot. Ankle dorsiflexion, subtalar joint range of motion, and angle of gait differed from normal values but were similar to those found in other studies involving diabetic subjects and were not important factors in the occurrence of hallux ulceration. These data indicate that a more pronated foot type is associated with hallux ulceration in diabetic feet. Further studies are required to evaluate the efficacy of footwear and orthoses in altering foot posture to manage hallux ulceration. (J Am Podiatr Med Assoc 96(3): 189–197, 2006)


2005 ◽  
Vol 95 (4) ◽  
pp. 401-404 ◽  
Author(s):  
Antal P. Sanders ◽  
René E. Weijers ◽  
Christiaan J. Snijders ◽  
Lew C. Schon

By using three-dimensional magnetic resonance image reconstruction, lateral displacement of the flexor hallucis longus tendon and sesamoid bones was made clearly visible in a living patient. This finding supports a biomechanical model related to disturbed muscle balance at the first metatarsophalangeal joint, which could play an important role in the pathogenesis of hallux valgus and metatarsus primus varus. (J Am Podiatr Med Assoc 95(4): 401–404, 2005)


2019 ◽  
Vol 109 (3) ◽  
pp. 207-214
Author(s):  
Javier Ferrer-Torregrosa ◽  
Sergio Garcia-Vicente ◽  
Nadia Fernández-Ehrling ◽  
Javier Torralba-Estellés ◽  
Carlos Barrios

Background: Precision in minimal-incision surgery allows surgeons to achieve accurate osteotomies and patients to avoid risks. Herein, a surgical guide for the foot is designed and validated in vitro using resin foot models for hallux abducto valgus surgery. Methods: Three individuals with different experience levels (an undergraduate student, a master's student, and an experienced podiatric physician) performed an Akin osteotomy, a Reverdin osteotomy, and a basal osteotomy of the first metatarsal. Results: The average measurements of each osteotomy and the angle of the basal osteotomy do not reveal significant differences among the three surgeons. A shorter deviation from the planned measurements has been observed in variables corresponding to the Akin osteotomy (the maximum deviation in the measurement of the distance from the proximal medial end of the Akin osteotomy to the first metatarsophalangeal joint interline was 1.67 mm, and the maximum deviation from the proximal lateral end of the Akin osteotomy to the first metatarsophalangeal joint interline was 1.00 mm). As for the Reverdin osteotomies, the maximum deviations in the measurement of the distance from the proximal medial end of the osteotomy to the first metatarsophalangeal joint interline were 3.60 and 3.53 mm in the expert and undergraduate surgeons, respectively. All of the osteotomies were precise among the groups, reducing the learning curve to the maximum. Conclusions: The three-dimensional–printed prototype has been proven effective in guiding surgeons to perform different types of osteotomies. Minimal deviations from the predefined osteotomies were found among the three surgeons.


2016 ◽  
Vol 38 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Jasper Stevens ◽  
Kenneth Meijer ◽  
Wouter Bijnens ◽  
Mathijs C.H.W. Fuchs ◽  
Lodewijk W. van Rhijn ◽  
...  

Background: Arthrodesis of the first metatarsophalangeal (MTP1) joint is an intervention often used in patients with severe MTP1 joint osteoarthritis and relieves pain in approximately 80% of these patients. The kinematic effects and compensatory mechanism of the foot for restoring a more normal gait pattern after this intervention are unknown. The aim of this study was to clarify this compensatory mechanism, in which it was hypothesized that the hindfoot and forefoot would be responsible for compensation after an arthrodesis of the MTP1 joint. Methods: Gait properties were evaluated in 10 feet of 8 patients with MTP1 arthrodesis and were compared with 21 feet of 12 healthy subjects. Plantar pressures and intersegmental range of motion were measured during gait by using the multisegment Oxford Foot Model. Pre- and postoperative X-rays of the foot and ankle were also evaluated. Results: The MTP1 arthrodesis caused decreased eversion of the hindfoot during midstance, followed by an increased internal rotation of the hindfoot during terminal stance, and ultimately more supination and less adduction of the forefoot during preswing. In addition, MTP1 arthrodesis resulted in a lower pressure time integral beneath the hallux and higher peak pressures beneath the lesser metatarsals. A mean dorsiflexion fusion angle of 30 ± 5.4 degrees was observed in postoperative radiographs. Conclusion: This study demonstrated that the hindfoot and forefoot compensated for the loss of motion of the MTP1 joint after arthrodesis in order to restore a more normal gait pattern. This resulted in a gait in which the rigid hallux was less loaded while the lesser metatarsals endured higher peak pressures. Further studies are needed to investigate whether this observed transfer of load or a preexistent decreased compensatory mechanism of the foot can possibly explain the disappointing results in the minority of the patients who experience persistent complaints after a MTP1 arthrodesis. Level of Evidence: Level III, comparative series.


2013 ◽  
Vol 103 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Douglas W. Powell ◽  
D.S. Blaise Williams ◽  
Robert J. Butler

Background: Malalignment and dysfunction of the foot have been associated with an increased propensity for overuse and traumatic injury in athletes. Several multisegment foot models have been developed to investigate motions in the foot. However, it remains unknown whether the kinematics measured by different multisegment foot models are equivocal. The purpose of the present study is to examine the efficacy of two multisegment foot models in tracking aberrant foot function. Methods: Ten high-arched and ten low-arched female athletes walked and ran while ground reaction forces and three-dimensional kinematics were tracked using the Leardini and Oxford multisegment foot models. Ground reaction forces and joint angles were calculated with Visual 3D (C-Motion Inc, Germantown, MD). Repeated-measures analyses of variance were used to analyze peak eversion, time to peak eversion, and eversion excursions. Results: The Leardini model was more sensitive to differences in peak eversion angles than the Oxford model. However, the Oxford model detected differences in eversion excursion values that the Leardini model did not detect. Conclusions: Although both models found differences in frontal plane motion between high- and low-arched athletes, the Leardini multisegment foot model is suggested to be more appropriate as it directly tracks frontal plane midfoot motion during dynamic motion. (J Am Podiatr Med Assoc 103(2): 99–105, 2013)


Sign in / Sign up

Export Citation Format

Share Document