scholarly journals Rearfoot, Midfoot, and Forefoot Motion in Naturally Forefoot and Rearfoot Strike Runners during Treadmill Running

2020 ◽  
Vol 10 (21) ◽  
pp. 7811
Author(s):  
Alessandra B. Matias ◽  
Paolo Caravaggi ◽  
Ulisses T. Taddei ◽  
Alberto Leardini ◽  
Isabel C. N. Sacco

Different location and incidence of lower extremity injuries have been reported in rearfoot strike (RFS) and forefoot strike (FFS) recreational runners. These might be related to functional differences between the two footstrike patterns affecting foot kinematics and thus the incidence of running injuries. The aim of this study was to investigate and compare the kinematic patterns of foot joints between naturally RFS and FFS runners. A validated multi-segment foot model was used to measure 24 foot kinematic variables in long-distance recreational runners while running on a treadmill. These variables included the three-dimensional relative motion between rearfoot, midfoot, and forefoot segments. The footstrike pattern was identified using kinematic data and slow-motion videos. Functional analysis of variance was used to compare the time series of these variables between RFS (n = 49) and FFS (n = 25) runners. In FFS runners, the metatarsal bones were less tilted with respect to the ground, and the metatarsus was less adducted with respect to the calcaneus during stance. In early stance, the calcaneus was more dorsiflexed with respect to the shank and returned to a more plantarflexed position at push-off. FFS runners showed a more adducted calcaneus with respect to the shank and a less inverted midfoot to the calcaneus. The present study has showed that the footstrike angle characterizes foot kinematics in running. These data may help shed more light on the relationship between foot function and running-related injuries.

2011 ◽  
Vol 46 (4) ◽  
pp. 358-365 ◽  
Author(s):  
Stephen C. Cobb ◽  
Laurie L. Tis ◽  
Jeffrey T. Johnson ◽  
Yong “Tai” Wang ◽  
Mark D. Geil

Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Intervention(s): After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might partially correct dys-functional kinematic patterns associated with low-mobile foot postures.


Author(s):  
Ying Yue Zhang ◽  
Gusztáv Fekete ◽  
Justin Fernandez ◽  
Yao Dong Gu

To determine the influence of the unstable sole structure on foot kinematics and provide theoretical basis for further application.12 healthy female subjects walked through a 10-meter experimental channel with normal speed wearing experimental shoes and control shoes respectively at the gait laboratory. Differences between the groups in triplanar motion of the forefoot, rearfoot and hallux during walking were evaluated using a three-dimensional motion analysis system incorporating with Oxford Foot Model (OFM). Compare to contrast group, participants wearing experimental shoes demonstrated greater peak forefoot dorsiflexion, forefoot supination and longer halluces plantar flexion time in support phase. Additionally, participants with unstable sole structure also demonstrated smaller peak forefoot plantarflexion, rearfoot dorsiflexion and range of joint motion in sagittal plane and frontal plane.. The difference mainly appeared in sagittal and frontal plane. With a stimulation of unstable, it may lead to the reinforcement of different flexion between middle and two ends of the foot model. The greater forefoot supination is infered that the unstable element structure may affect the forefoot motion on the frontal plane and has a control effect to strephexopodia people. The stimulation also will reflexes reduce the range of rearfoot motion in sagittal and frontal planes to control the gravity center of the body and keep a steady state in the process of walking.


2017 ◽  
Vol 33 (4) ◽  
pp. 268-276 ◽  
Author(s):  
Christian A. Clermont ◽  
Sean T. Osis ◽  
Angkoon Phinyomark ◽  
Reed Ferber

Certain homogeneous running subgroups demonstrate distinct kinematic patterns in running; however, the running mechanics of competitive and recreational runners are not well understood. Therefore, the purpose of this study was to determine whether we could separate and classify competitive and recreational runners according to gait kinematics using multivariate analyses and a machine learning approach. Participants were allocated to the ‘competitive’ (n = 20) or ‘recreational’ group (n = 15) based on age, sex, and recent race performance. Three-dimensional (3D) kinematic data were collected during treadmill running at 2.7 m/s. A support vector machine (SVM) was used to determine if the groups were separable and classifiable based on kinematic time point variables as well as principal component (PC) scores. A cross-fold classification accuracy of 80% was found between groups using the top 5 ranked time point variables, and the groups could be separated with 100% cross-fold classification accuracy using the top 14 ranked PCs explaining 60.29% of the variance in the data. The features were primarily related to pelvic tilt, as well as knee flexion and ankle eversion in late stance. These results suggest that competitive and recreational runners have distinct, ‘typical’ running patterns that may help explain differences in injury mechanisms.


Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Soft landing after jumping is associated with the prevention of lower extremity injuries during sports activities in terms of the energy absorption mechanisms. In this study, the contribution of lower extremity joints during soft landing was investigated. Subjects comprised 20 healthy females. Kinetics and kinematics data were obtained during drop vertical jumps using a three-dimensional motion analysis system. Negative mechanical work values in the lower extremity joints were calculated during landing. A multiple regression analysis was performed to determine which lower extremity joints contributed more in achieving soft landing. The means of mechanical work of the hip, knee, and ankle in the sagittal plane were −0.30 ± 0.17, −0.62 ± 0.31, and −1.03 ± 0.22 J/kg, respectively. Results showed that negative mechanical work in the hip and knee is effective in achieving soft landing. These findings indicate that energy absorption in the hip and knee joints might be an important factor in achieving soft landing, whereas that in the ankle has a negative effect. Therefore, when improving soft landing techniques, we should consider energy absorption in the hip and knee via eccentric activation of the hip and knee extensors during landing.


2008 ◽  
Vol 98 (2) ◽  
pp. 102-106 ◽  
Author(s):  
Robert J. Butler ◽  
Howard Hillstrom ◽  
Jinsup Song ◽  
Christine J. Richards ◽  
Irene S. Davis

Background: The purposes of this study were 1) to determine the intrarater and interrater reliability of the arch height index measurement system device, 2) to establish population normative values for the arch height index in recreational runners, and 3) to compare arch height index values between the right and left feet and between genders. Methods: Eleven subjects were used to establish intrarater and interrater reliability of the arch height index measurement system. This system was then used to measure the arch height index of 100 recreational runners. Results: Measurements taken with the arch height index measurement system device exhibited high intrarater and interrater reliability. The mean ± SD arch height index of the recreational runners was 0.340 ± 0.030. Men had larger feet than women, but the arch height index between genders was similar. Conclusions: The arch height index measurement system device is reliable to use between testers while simplifying the measurement procedure for recording the arch height index. The arch height index may be helpful in identifying potential structural factors that predispose individuals to lower-extremity injuries. (J Am Podiatr Med Assoc 98(2): 102–106, 2008)


Author(s):  
Wen Jing Quan ◽  
Qi Chang Mei ◽  
Yao Dong Gu ◽  
Feng Ren ◽  
Thorsten Sterzing ◽  
...  

The growing popularity of endurance sports activities is associated with a growing number of running injuries among recreational runners. The aim of this study was to assess the kinematic and kinetic variation on biomechanical parameters before and after 5km of treadmill running in female runners. Fourteen habitually shod female runners were assessed during treadmill running at their self-selected 5km running speed. A VICON motion analysis system and a Novel Pedar insole plantar pressure measurement system were used to record kinematic and plantar pressure data. Key findings from the study were that the internal and external rotation angle of the ankle, hip and knee while pre-5k running showed significant differences to those evaluated post-5k. The peak values of ground reaction forces (GRF) recorded pre-5k running were larger than the forces measured post-5k running. Combining the inversion and eversion of the ankle in the coronal plane during the pushing off phase, post-5k running showed a bigger eversion angle than pre-5k running. These subtle differences may reflect adaptation of motor control in female runners during long distance running of 5km.


2018 ◽  
Vol 36 ◽  
pp. 48-53 ◽  
Author(s):  
Dennis van Poppel ◽  
Gwendolijne G.M. Scholten-Peeters ◽  
Marienke van Middelkoop ◽  
Bart W. Koes ◽  
Arianne P. Verhagen

Author(s):  
Wenjing Quan ◽  
Feng Ren ◽  
Datao Xu ◽  
Fekete Gusztav ◽  
Julien S Baker ◽  
...  

Background: Joint mechanics are permanently changed using different intensities and running durations. These variations in intensity and duration also influence fatigue during prolonged running. Little is known about the potential interactions between fatigue and joint mechanics in female recreational runners. Thus, the purpose of this study was to describe and examine kinematic and joint mechanical parameters when female recreational runners are subject to fatigue as a result of running.Method: Fifty female recreational runners maintained running on a treadmill to induce fatigue conditions. Joint mechanics, sagittal joint angle, moment, and power were recorded pre- and immediately post fatigue treadmill running.Result: Moderate reductions in absolute positive ankle power, total ankle energy dissipation, dorsiflexion at initial contact, max dorsiflexion angle, and range of motion of the joint ankle were collected after fatigue following prolonged fatigue running. Knee joint mechanics, joint angle, and joint power remained unchanged after prolonged fatigue running. Nevertheless, with the decreased ankle joint work, negative knee power increased. At the hip joint, the extension angle was significantly decreased. The range motion of the hip joint, hip positive work and hip positive power were increased during the post-prolonged fatigue running.Conclusion: This study found no proximal shift in knee joint mechanics in amateur female runners following prolonged fatigue running. The joint work redistribution was associated with running fatigue changes. As for long-distance running, runners should include muscle strength training to avoid the occurrence of running-related injuries.


2014 ◽  
Vol 15 (4) ◽  
Author(s):  
Jonathan Sinclair ◽  
Stephen Atkins ◽  
Hayley Vincent

AbstractPurpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°). Methods. Twelve male participants ran at 4.0 m · s


Sign in / Sign up

Export Citation Format

Share Document