Invasive alien woody plants of the Orange Free State

Bothalia ◽  
1991 ◽  
Vol 21 (1) ◽  
pp. 73-89 ◽  
Author(s):  
L. Henderson

The frequency and abundance of invasive alien woody plants were recorded along roadsides and at watercourse crossings in 66% (151/230) of the quarter degree squares in the study area. The survey yielded 64 species of which the most prominent (in order of prominence) in streambank habitats were:  Salix babylonica, Populus x  canescens, Acacia dealbata and  Salix fragilis (fide R.D. Meikle pers. comm ). The most prominent species (in order of prominence) in roadside and veld habitats were:  Opunlia ficus-indica, Prunus persica, Eucalyptus spp..  Rosa eglanteria, Pyracantha angustifolia and Acacia dealbata.Little invasion was recorded for most of the province. The greatest intensity of invasion was recorded along the perennial rivers and rocky hillsides in the moist grassland of the eastern mountain region bordering on Lesotho and Natal.

Bothalia ◽  
1989 ◽  
Vol 19 (2) ◽  
pp. 237-261 ◽  
Author(s):  
L. Henderson

The frequency and abundance of invasive alien woody plants were recorded along roadsides and at watercourse crossings in 87% (152/175) of the quarter degree squares in the study area. The survey yielded BO species of which the most prominent species (in order of prominence) in roadside and veld habitats were:  Chromolaena odoruta, Solatium mauritianum, Psidium guajava, Rubus spp., Acacia meamsu and Lantana camara The most prominent species (in order of prominence) in streambank habitats were:  Acacia dealbata, A. meamsii and  Salix babylonica.The greatest intensity of invasion was recorded in the Natal midlands and in the coastal belt of southern Natal, including the metropolitan areas of Pietermaritzburg and Durban. There was relatively little invasion in the north-eastern lowlands of Natal but the potential for expansion is great. Little invasion was recorded in the north-eastern Orange Free State except along some watercourses.


Bothalia ◽  
1992 ◽  
Vol 22 (1) ◽  
pp. 119-143 ◽  
Author(s):  
L. Henderson

The frequency and abundance of invasive alien woody plants were recorded along roadsides and at watercourse crossings in 69.9% (151/216) of the quarter degree squares in the study area. The survey yielded 101 species of which the most prominent (in order of prominence) in roadside and veld habitats were:  Opuntia ficus-indica, Acacia meamsii and A. cyclops. The most prominent species (in order of prominence) in streambank habitats were:  A. meamsii, Populus x  canescens, Salix babylonica and  S. fragilis (fide R.D. Meikle).The greatest intensity of invasion was recorded in the wetter eastern parts and particularly in the vicinity of Port Elizabeth. Uitenhage, East London, Grahamstown, Hogsback and Stutterheim. There was relatively little invasion in the central and western dry interior except along watercourses.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 851A-851 ◽  
Author(s):  
Michael Wisniewski ◽  
Rajeev Arora ◽  
Tim Artlip

Studies with herbaceous crops have indicated a similarity in the types of proteins that accumulate in response to environmental stresses and ABA. Many of these proteins belong to a group called dehydrins. We have identified a 60 kDa dehydrin-related protein (PCA 60) in peach associated with cold hardiness. Our objective was to determine if seasonal induction of dehydrins are a common feature in a wide array of woody plants Bark tissues from eight species of woody plants were collected monthly for 1.5 years. The species included: Prunus persica `Loring'; Malus domestica `Golden Delicious'; Rubus sp. `Chester'; Populus sp.; Salix babylonica; Cornus florida; Sassafras albidum, and Robinia Pseudo-acacia. Protein extraction, SDSPAGE, and immunoblotting were performed as previously reported. Immunoblots were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins (provided by Timothy Close). Although some proteins, immunologically related to dehydrins, appeared lo be constitutive, distinct seasonal patterns associated with winter acclimation were observed in all species. The molecular weights of these proteins varied, although there were similarities in related species (willow and poplar). Although this study represents a precursory examination of dehydrins, the results indicate that these proteins are common to woody plants and that further research to characterize their function is warranted.


Zootaxa ◽  
2008 ◽  
Vol 1756 (1) ◽  
pp. 1 ◽  
Author(s):  
ZI-WEI SONG ◽  
XIAO-FENG XUE ◽  
XIAO-YUE HONG

The eriophyoid mite fauna (Acari: Eriophyoidea) of Gansu Province, northwestern China was studied and eighty species were reported herein, among which twelve are new to science. These species and their hosts are as follows: Setoptus koraiensis on Pinus koraiensis and P. thunbergii; Anothopoda hainanensis on Zanthoxylum sp. (Rutaceae); Cecidophyopsis persicae on Amygdalus persica and Cerasus pseudocerasus (Rosaceae); Cecidophyes bambusae on Bambusa sp. (Gramineae); Epicecidophyes meliosmanis sp. nov. on Meliosma sp. (Sabiaceae); Stenacis lanzhouensis on Salix babylonica (Salicaceae); Eriophyes distinguendus on Prunus salicina (Rosaceae); Eriophyes pyri on Pyrus sp. (Rosaceae); Eriophyes zhangyeensis on Salix sp. (Salicaceae); Aceria abalis on Artemisiae sp. (Compositae); Aceria chinensis on Armeniaca vulgaris (Rosaceae); Aceria dispar on Populus tomentosa and P. tremula (Salicaceae); Aceria milli on Triticum sp. and Panicum miliaceum (Gramineae); Aceria paramacrodonis on Lycium sp. (Solanaceae); Aceria paratulipae on Triticum sp. and Panicum miliaceum (Gramineae); Aceria qinghaiensis on Salix babylonica (Salicaceae); Aceria tosichella on Triticum sp. (Gramineae); Aceria tulipae on Tulipa sp. (Liliaceae); Acalitus phloeocoptes on Prunus sp. (Rosaceae); Acaphyllisa adamantis sp. nov. on Salix sp. (Salicaceae); Paracalacarus podocarpi on Podocarpus macrophyllus and Podocarpus nagi (Podocarpaceae); Tegonotus platycaryanis sp. nov. on Platycarya strobilacea (Juglandaceae); Calepitrimerus bungeanus on Euonymus maackii (Celastraceae); Calepitrimerus clematisis sp. nov. on Clematis sp. (Ranunculaceae); Calepitrimerus guanegounis sp. nov. on Lindera rubronervia (Lauraceae); Calepitrimerus linderanis sp. nov. on Lindera sp. (Lauraceae); Calepitrimerus oxytropis on Oxytropis ochrantha (Leguminosae); Caleptrimerus sabinae on Sabina chinensis (Cupressaceae); Epitrimerus amygdali on Amygdalus triloba (Rosaceae); Epitrimerus argyris on Artemisia argyri (Compositae); Epitrimerus armeniacae on Prunus armeniaca (Rosaceae); Epitrimerus integrae on Salix integra (Salicaceae); Epitrimerus lonicerae on Lonicera sp. (Caprifoliaceae); Epitrimerus sabinae on Sabina chinensis cv. Kaizuca (Cupressaceae); Phyllocoptruta sorbarianis sp. nov. on Sorbaria kirilowii (Rosaceae); Phyllocoptruta spiraeanis sp. nov. on Spiraea blumei (Rosaceae); Phyllocoptes dangchangi on Picea asperata (Pinaceae); Phyllocoptes japonicae on Lonicera japonica (Caprifoliaceae); Phyllocoptes gansuensis on Poteantilla glabra (Rosaceae); Phyllocoptes lonicerae on Lonicera caprifolium (Caprifoliaceae); Phyllocoptes lyciumi on Lycium chinense (Solanaceae); Phyllocoptes adalius on Rosa sp. (Rosaceae); Phyllocoptes taishanensis on Cedrus deodara (Pinaceae); Vittacus humuli on Humulus scandens (Moraceae); Aculus mononis sp. nov. on Acer mono (Aceraceae); Aculus niphocladae, Aculus salicis, and Aculus tetanothrix on Salix sp. (Salicaceae); Aculus schlechtendali on Malus pumila (Rosaceae); Aculops baligouis on Acer sp. (Aceraceae); Aculops jambosae on Syzygium aromaticum (L.) (Myrtaceae); Aculops pelekassi (Keifer), 1959, on Citrus sp. and Zanthoxylum bungeanum (Rutaceae); Aculops salixis on Salix sp. (Salicaceae); Aculops saussureae on Saussurea polycephala (Asteraceae); Aculops syringae on Syringa oblata (Oleaceae); Aculops wenxianensis on Melia azedarach (Meliaceae); Paratetra salicis on Salix sp. (Salicaceae); Tetra lucidi on Ligustrum lucidum (Oleaceae); Tetra polygonumnis sp. nov. on Polygonum sp. (Chenopodiaceae); Tetra populi on Populus sp. (Salicaceae); Tetra salixis on Salix babylonica (Salicaceae); Tetra shiheziensis on Populus sp. (Salicaceae); Tegolophus hunanensis on Vitex sp. (Verbenaceae); Tegolophus salicis on Salix sp. (Salicaceae); Tegolophus sophorae on Sophora japonica (Leguminosae); Diptilomiopus buxusis sp. nov. on Buxus sp. (Buxaceae); Diptacus mercuriasis on Mercurialis leiocarpa (Euphorbiaceae); Diptacus persicae on Prunus persica (Rosaceae); Diptacus platyphyllae on Betula platyphylla (Betulaceae); Diptacus serrulatis on Photinia serrulata (Rosaceae); Diptacus sorbusis on Sorbus sp. (Rosaceae); Diptacus wenisis on Viburnum sp. (Caprifoliaceae); Trimeroptes quercus on Quercus glauca (Fagaceae); Areekulus rhododendronis sp. nov. on Rhododendron sp. (Ericaceae); Rhyncaphytoptus fabris on Abies fabri (Pinaceae); Rhyncaphytoptus fargesis on Abies fargesii (Pinaceae); Rhyncaphytoptus guanegounis on Lonicera sp. (Caprifoliaceae); Rhyncaphytoptus potentillae on Pentaphylloides floribunda [Potentilla fruticosa] and Potentilla glabra (Rosaceae); Rhyncaphytoptus ulmi and Rhyncaphytoptus ulmivagrans on Ulmus sp. (Ulmaceae). A key to the eriophyoid mites in the province is also provided herein.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 514B-514
Author(s):  
Michael Wisniewski ◽  
Tim Artlip ◽  
Carole Bassett ◽  
Ann Callahan

Cold acclimation in temperate, woody plants involves distinct changes in gene activity and protein expression. We have been identifying proteins and genes that are associated with seasonal changes in cold hardiness. Seasonal changes in a 60-kDa dehydrin and its corresponding transcript have been identified, as well as seasonal changes in 16- and 19-kDa storage proteins. Further screening of a cDNA library, constructed from cold-acclimated bark tissues collected in December, identified a 700–800-bp clone that was seasonally expressed in Northern blots. The transcript began to accumulate in October, reached a peak in November–December, and then began to decline. By April, the transcript was no longer present in bark tissues. The transcript size indicates that this gene my be related to either the 16- or 19-kDa storage proteins previously identified; however, an amino acid sequence of the protein for comparison has not yet been obtained. Interestingly, the transcript is also expressed during the early stages of peach fruit development. A similar pattern between seasonal expression and fruit development has been observed for a peach dehydrin transcript. Analysis of a partial sequence of the clone has indicated a similarity to genes encoding proteinase inhibitors and thionins (a class of biocidal proteins). More definitive characterization of the gene and identification of its corresponding protein are in progress.


Author(s):  
A. Peerally

Abstract A description is provided for Calonectria kyotensis. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Acacia dealbata, Camellia sinensis, Dianthus barbatus, Pinus sp., Prunus persica, Rhododendron (Azalea) and Syringa vulgaris. DISEASE: Causes a root rot of peach trees and in inoculation tests was found to cause wilting, root rot and death of peach seedlings (46, 2468). Severe losses to cuttings and liners of azaleas, lilac and Sweet William reported (47, 3461). Associated with Cylindrocladium scoparium with 'short life' of peach trees (51, 1648), C. floridanum being usually more virulent. Causes death of single-node tea cuttings in Mauritius (52, 1249) and associated with decline of tea bushes (Peerally, 1972). Soil drenches with benomyl give complete control of the pathogen (47, 3461). Soil drenches with benomyl and dithane M-45, and manuring with artificial fertilizers followed by earthing up, have given satisfactory control of root rot of tea bushes in Mauritius. GEOGRAPHICAL DISTRIBUTION: England, Germany, Japan, Mauritius and USA. TRANSMISSION: The pathogen is soil-inhabiting, rarely attacking aerial parts of plants.


2018 ◽  
pp. 29-42 ◽  
Author(s):  
А.А. ДОЛГИХ

На примере Кулундинского дендрария приведены материалы мониторинга интродукционных ресурсов деревьев и кустарников. Успех введения их в культуру защитного лесоразведения базируется на детальном изучении эколого-биологических особенностей, опыта интродукции в новых условиях. Из-за возросшей в последние годы антропогенной нагрузки используемый ассортимент древесных растений в защитных лесных насаждениях аридных территорий требует обновления. Постановка проблемы включает – выделение ценного генофонда для создания семенных баз и выращивания адаптированного посадочного материала. Показано, что в условиях Кулундинской степи интродуценты в защитном лесоразведении используются еще недостаточно широко, ассортимент древесных видов беден (Betula pendula Roth., Populus balsamifera L., Pinus sylvestris L., Larix sibirica Ledeb., Salix fragilis L.). Сопутствующие древесные растения представлены Acer negundo L., Malus pallasiana Juz., Ulmus pumila L. Другие древесные виды применяются в защитном лесоразведении в ограниченных масштабах. Цель исследований – оценка интродукционной устойчивости генофонда Кулундинского дендрария на основе мониторинга и комплексного изучения их биологических особенностей в условиях Кулундинской степи для защитного лесоразведения. Кулундинский дендрарий создан в 1977 году, он расположен на территории Западно-Сибирской агролесомелиоративной опытной станции (участок 49098 м2, кадастровый номер 22:23:010003:0014). Тип почв – каштановые, легкосуглинистые. Основные запасы гумуса сосредоточены в верхнем горизонте и с глубиной уменьшаются от 2,7 до 0,6%, Глубина залегания грунтовых вод 5-6 м. Выявлено, что видовой состав деревьев и кустарников Кулундинского дендрария включает 143 таксона из 52 родов и 25 семейств. К числу хозяйственно ценных родовых комплексов относятся представители семейства Rosaceae. Установлено, что представители семейства Rosaceae, как интродукционный ресурс для обогащения лесомелиоративных комплексов и формирования комфортных условий проживания населения, занимает одно из самых крупных по таксономическому составу древесных видов и важным по многофункциональному использованию. Рассмотрены методические подходы по проведению мониторинга интродукционных ресурсов, предложена методика расчета интродукционной устойчивости растений к новым условиям произрастания включающая группы признаков (зимостойкость, засухоустойчивость, побегообразовательная способность, прирост в высоту, генеративное развитие, возможный способ размножения в культуре) и приведено соотношение коллекционного фонда по показателям и размерностям шкал. Материалы по мониторингу интродукционных ресурсов Кулундинского дендрария ФНЦ агроэкологии РАН по оценке адаптированного генофонда для защитного лесоразведения будут использованы для разработки мероприятий по сохранению биоразнообразия и рациональному использованию хозяйственно ценных растений; с учетом полученных данных отобраны перспективные виды для обогащения защитных лесных насаждений Кулундинской степи. On the example of the Kulunda arboretum the materials of monitoring of introduction resources of trees and bushes are given. The success of their introduction into the culture of protective afforestation is based on a detailed study of ecological and biological features, the experience of introduction in new conditions. Due to the increased anthropogenic load in recent years, the range of woody plants used in the protective forest plantations of arid areas requires updating. The problem statement includes the allocation of a valuable gene pool for the creation of seed bases and the cultivation of adapted planting material. It is shown that in the conditions of the Kulunda steppe the introduced species in the protective afforestation are not widely used yet, the range of tree species is poor (Betula pendula Roth., Populus balsamifera L., Pinus sylvestris L., Larix sibirica Ledeb., Salix fragilis L.). Accompanying woody plants are presented by Acer negundo L., Malus pallasiana Juz., Ulmus pumila L. Other tree species are used in protective afforestation on a limited scale. The purpose of the evaluation introduction the sustainability of the gene pool of Salted arboretum on the basis of a comprehensive monitoring and study their biological features under conditions of Kulundinskaya steppe for protective afforestation. Kulundinsky arboretum was established in 1977, it is located on the territory of the West Siberian agroforestry experimental station (plot 49098 m2, cadastral number 22:23:010003:0014). Type of soil – chestnut, light-loamy. The main reserves of humus are concentrated in the upper horizon and with a depth decrease from 2.7 to 0.6%, the depth of groundwater 5-6 m. It was revealed that the species composition of trees and shrubs of the Kulundinsky arboretum includes 143 taxa from 52 genera and 25 families. Among the economically valuable generic complexes are representatives of the family Rosaceae. It is established that the representatives of the family Rosaceae, as an introduction resource for the enrichment of forest reclamation complexes and the formation of comfortable living conditions of the population, is one of the largest in taxonomic composition of wood species and important for multifunctional use. Methodical approaches to carrying out monitoring of introduction of resources, the proposed method of calculation introduction the resistance of plants to new conditions including the characteristics group (winter hardiness, drought tolerance, pobegoobrazovatelnost ability, growth in height, generative development, possible method of propagation in culture) and the ratio of collection Fund on indicators and the dimensions of the scales. Materials on monitoring of introduction resources of the Kulundinsky arboretum of the Federal CENTER of Agroecology of the Russian Academy of Sciences on assessment of the adapted gene pool for protective afforestation will be used to develop measures for biodiversity conservation and rational use of economically valuable plants; based on the data obtained, promising species for the enrichment of protective forest plantations of the kulundin steppe were selected.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Pina ◽  
Patricia Irisarri ◽  
Pilar Errea ◽  
Tetyana Zhebentyayeva

Graft incompatibility (GI) between the most popular Prunus rootstocks and apricot cultivars is one of the major problems for rootstock usage and improvement. Failure in producing long-leaving healthy grafts greatly affects the range of available Prunus rootstocks for apricot cultivation. Despite recent advances related to the molecular mechanisms of a graft-union formation between rootstock and scion, information on genetic control of this trait in woody plants is essentially missing because of a lack of hybrid crosses, segregating for the trait. In this study, we have employed the next-generation sequencing technology to generate the single-nucleotide polymorphism (SNP) markers and construct parental linkage maps for an apricot F1 population “Moniqui (Mo)” × “Paviot (Pa)” segregating for ability to form successful grafts with universal Prunus rootstock “Marianna 2624”. To localize genomic regions associated with this trait, we genotyped 138 individuals from the “Mo × Pa” cross and constructed medium-saturated genetic maps. The female “Mo” and male “Pa” maps were composed of 557 and 501 SNPs and organized in eight linkage groups that covered 780.2 and 690.4 cM of genetic distance, respectively. Parental maps were aligned to the Prunus persica v2.0 genome and revealed a high colinearity with the Prunus reference map. Two-year phenotypic data for characters associated with unsuccessful grafting such as necrotic line (NL), bark and wood discontinuities (BD and WD), and an overall estimate of graft (in)compatibility (GI) were collected for mapping quantitative trait loci (QTLs) on both parental maps. On the map of the graft-compatible parent “Pa”, two genomic regions on LG5 (44.9–60.8 cM) and LG8 (33.2–39.2 cM) were associated with graft (in)compatibility characters at different significance level, depending on phenotypic dataset. Of these, the LG8 QTL interval was most consistent between the years and supported by two significant and two putative QTLs. To our best knowledge, this is the first report on QTLs for graft (in)compatibility in woody plants. Results of this work will provide a valuable genomic resource for apricot breeding programs and facilitate future efforts focused on candidate genes discovery for graft (in)compatibility in apricot and other Prunus species.


Author(s):  
O. T. Minick ◽  
M. C. Kew

The effects of heat stroke on hepatic structure were studied in 32 Bantu patients who worked underground in the Transvaal and Orange Free State Gold Mines.Judging from biochemical and morphologic findings, liver damage is an invariable complication of heat stroke. In the milder cases (90 per cent) raised enzyme levels, bromsulphalein retention, and increased prothrombin times were the most common abnormalities.


Sign in / Sign up

Export Citation Format

Share Document