scholarly journals assurance of emergency core cooling system in nuclear reactors

2014 ◽  
Vol 37 (1) ◽  
pp. 52
Author(s):  
AnilKumar Saxena
Author(s):  
A. S. Chinchole ◽  
Arnab Dasgupta ◽  
P. P. Kulkarni ◽  
D. K. Chandraker ◽  
A. K. Nayak

Abstract Nanofluids are suspensions of nanosized particles in any base fluid that show significant enhancement of their heat transfer properties at modest nanoparticle concentrations. Due to enhanced thermal properties at low nanoparticle concentration, it is a potential candidate for utilization in nuclear heat transfer applications. In the last decade, there have been few studies which indicate possible advantages of using nanofluids as a coolant in nuclear reactors during normal as well as accidental conditions. In continuation with these studies, the utilization of nanofluids as a viable candidate for emergency core cooling in nuclear reactors is explored in this paper by carrying out experiments in a scaled facility. The experiments carried out mainly focus on quenching behavior of a simulated nuclear fuel rod bundle by using 1% Alumina nanofluid as a coolant in emergency core cooling system (ECCS). In addition, its performance is compared with water. In the experiments, nuclear decay heat (from 1.5% to 2.6% reactor full power) is simulated through electrical heating. The present experiments show that, from heat transfer point of view, alumina nanofluids have a definite advantage over water as coolant for ECCS. Additionally, to assess the suitability of using nanofluids in reactors, their stability was investigated in radiation field. Our tests showed good stability even after very high dose of radiation, indicating the feasibility of their possible use in nuclear reactor heat transfer systems.


2018 ◽  
Vol 111 ◽  
pp. 554-567 ◽  
Author(s):  
Seok Bin Seo ◽  
In Guk Kim ◽  
Kyung Mo Kim ◽  
Yeong Shin Jeong ◽  
In Cheol Bang

2018 ◽  
Vol 929 ◽  
pp. 1-9 ◽  
Author(s):  
Dani Gustaman Syarif ◽  
Djoko Hadi Prajitno ◽  
Efrizon Umar

Nanofluids have great attention in the world due to big potential to replace conventional fluids that have been used in some systems such as automotive, nuclear reactors, solar heating, building heating, and industry. Utilization of indigenous raw material in production of nanoparticles is a key to reach real application of the nanofluids. The aim of this study is to know the effect of combination of organic agent in solgel synthesis on characteristic of Al2O3nanoparticles and nanofluids made of them. In this study, Al2O3nanoparticles have been synthesized from local bauxite using solgel method with citric acid and PEG 4000 as chelating and capping agent. Nanofluids with pH 10 were prepared from the nanoparticles. Raw material of Al (OH)3was extracted from the bauxite. Powder of Al (OH)3was diluted in water, and citric acid and PEG 4000 was added into the solution to form a sol. The sol was heated to form a xerogel, and then calcined at 900°C for 3 hours to get the Al2O3nanoparticles. From the synthesis we got gamma-Al2O3nanoparticles with crystallite size of 4.0-4.6 nm. From the characterization data of the nanofluids it was known that the nanofluids with concentration of Al2O3nanoparticles of 0.025 vol % to 0.1 vol% possessed relatively high zeta potential of-39.2 mV to-40 mV, and good critical heat flux (CHF) enhancement of 13% to 74%. The nanofluids had large potential to be applied as coolant for External Reactor Core Cooling System (ERVCS), ECCS (Emergency Core Cooling System), electronics, automotive, metal forming and solar heating system.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Vivek Gupta ◽  
Pradyumna Ghosh

Abstract Quench front characteristics and flow physics have been observed for single jet impingement using de-ionized (DI) water and various oxide-based nanofluids. Quench front velocity, shape, intensities of sputtering, and postquench front phenomenon have been observed through the high-speed camera. Quench front velocity is higher in the case of nanofluids than DI water due to the presence of nanoparticles in nanofluids. However, quench front shape also differs in the case of nanofluids due to the rupture of the boundary layer, which depends on agglomeration characteristics and the nanomicroporous layer formed on the solid surface of the heater. A better understanding of quench behavior, for a very low concentration of nanofluids, will make it a viable technology for emergency core cooling system (ECCS) for upcoming nuclear reactors in India.


2016 ◽  
Vol 196 (3) ◽  
pp. 598-613 ◽  
Author(s):  
Kyung Mo Kim ◽  
Yeong Shin Jeong ◽  
In Guk Kim ◽  
In Cheol Bang

Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Tomasz Bury

Abstract The problem of hydrogen behavior in containment buildings of nuclear reactors belongs to thermal-hydraulic area. Taking into account the size of systems under consideration and, first of all, safety issues, such type of analyses cannot be done by means of full-scale experiments. Therefore, mathematical modeling and numerical simulations are widely used for these purposes. A lumped parameter approach based code HEPCAL has been elaborated in the Institute of Thermal Technology of the Silesian University of Technology for simulations of pressurized water reactor containment transient response. The VVER-440/213 and European pressurised water reactor (EPR) reactors containments are the subjects of analysis within the framework of this paper. Simulations have been realized for the loss-of-coolant accident scenarios with emergency core cooling system failure. These scenarios include core overheating and hydrogen generation. Passive autocatalytic recombiners installed for removal of hydrogen has been taken into account. The operational efficiency of the hydrogen removal system has been evaluated by comparing with an actual hydrogen concentration and flammability limit. This limit has been determined for the three-component mixture of air, steam and hydrogen. Some problems related to the lumped parameter approach application have been also identified.


Author(s):  
Heng Xie

In this study, a transient performance simulation model of AP1000 using SCDAP/RELAP5 4.0 is developed. The reactor coolant system (RCS) and passive core cooling system (PXS) are modeled respectively. Various kinds of hydrodynamic component including Volume, Junction, Separator, Accumulator, Branch, Pipe, Valve and Pump are adopted to simulate the fluid system of AP1000. The DECLG (double-end rupture of cold leg) accident is simulated and analyzed. To study the effect of axial heat conduction, two kinds of heat structure with and without reflooding model are employed to simulate the fuel rod respectively. The comparison shows that the 2D heat conduction play important role in the reflooding process.


Sign in / Sign up

Export Citation Format

Share Document