Myocardial preconditioning potential of hedgehog activator purmorphamine (smoothened receptor agonist) against ischemia-reperfusion in deoxycortisone acetate salt-induced hypertensive rat hearts

2019 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Sidharth Mehan ◽  
Himanshi Khera ◽  
Anupam Awasthi
Author(s):  
Yulia V. Goshovska ◽  
Yulia P. Korkach ◽  
Tatiana V. Shimanskaya ◽  
Anatolii V. Kotsuruba ◽  
Vadym F. Sagach

2007 ◽  
Vol 42 (6) ◽  
pp. S12
Author(s):  
Marcela Fialova ◽  
Katarina Dlugosova ◽  
Vladimir Knezl ◽  
Ludmila Okruhlicova ◽  
Jan Drimal ◽  
...  

2005 ◽  
Vol 289 (2) ◽  
pp. H614-H623 ◽  
Author(s):  
Harjot K. Saini ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10–30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5′-[γ-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.


1990 ◽  
Vol 22 ◽  
pp. S64
Author(s):  
Arpad Tosaki ◽  
Matyas Koltai ◽  
Thierry Tarrade ◽  
Pierre Braquet

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Weiwei Wang ◽  
Hao Zhang ◽  
Guo Xue ◽  
Li Zhang ◽  
Weihua Zhang ◽  
...  

Background. Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool.Methods. Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol.Results. IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor,α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunctionin vitro.Conclusion. Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.


Sign in / Sign up

Export Citation Format

Share Document