A Translucent OBS Node Architecture to Improve Traffic Emission and Loss Probability

Author(s):  
Thomas Coutelen ◽  
Brigitte Jaumard ◽  
Gérard Hébuterne
2020 ◽  
Author(s):  
Gaurav Mahamuni ◽  
Jiayang He ◽  
Jay Rutherford ◽  
Byron Ockerman ◽  
Edmund Seto ◽  
...  

<p>Exposure to combustion generated aerosols such as PM from residential woodburning, forest fires, cigarette smoke, and traffic emission have been linked to adverse health outcomes. It is important to assess the chemical composition of PM to examine personal exposure. Excitation-emission matrix (EEM) spectroscopy has been shown as a sensitive and cost-effective technique for evaluation of combustion PM composition and as a source apportionment tool. However, EEM measurements are hindered by a solvent extraction step and a need for benchtop instrumentation. Here, we present a methodology that eliminates this labor-intensive sample preparation and allows to automate and miniaturize the detection platform. A miniature electrostatic collector deposits PM sample onto transparent polydimethylsiloxane (PDMS) coated substrate, where PAH components are extracted into solid-phase (SP) solvent and analyzed using EEM spectroscopy in-situ. We evaluated external and internal excitation schemes to optimized signal to noise ratio. Analysis of woodsmoke and cigarette smoke samples showed good agreement with liquid extraction EEM spectra. Internal excitation is hindered by fluorescent interference from PDMS at λ<250nm. The external excitation EEM spectra are dependent on the incident angle; ranges of 30-40⁰ and 55-65⁰ showed the best results. The proposed SP-EEM technique can be used for development of miniaturized sensors for chemical analysis of combustion generated PM. </p>


2020 ◽  

Although current circumstances pose challenges to foretelling the future consequences of coronavirus spread, we consider environmental load-related researches became more and more important nowadays perhaps as never before. Many experts believe that the increasingly dire public health emergency situation, policy makers and word leaders should make it possible that the COVID-19 outbreak contributes to a transition of sustainable consumption. With the purpose of contributing to rethink the importance of sustainability efforts, here we present total suspended particulates (TSP) results which represent traffic emission caused air pollution in the three most populous cities of Ecuador obtained before, during, and after the: (i) the traffic measures entered into force on state level; (ii) curfew entered into force on state level; (iii) and quarantine entered into force (in Guayaquil, and whole Guayas province). We documented significant decrease in TSP emissions (PM2.5 and PM10) compared to normal traffic operation obtained from some four lanes roads in Quito, Guayaquil, and Cuenca. The most remarkable fall in suspended particulate values (96.47% decrease in PM2.5) compared to emission observed before traffic measures occurred in Cuenca.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 667
Author(s):  
Qingyuan Guo ◽  
Liming Li ◽  
Xueyan Zhao ◽  
Baohui Yin ◽  
Yingying Liu ◽  
...  

To better understand the source and health risk of metal elements in PM2.5, a field study was conducted from May to December 2018 in the central region of the Liaoning province, China, including the cities of Shenyang, Anshan, Fushun, Benxi, Yingkou, Liaoyang, and Tieling. 24 metal elements (Na, K, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Sb, Pb, Bi, Al, Sr, Mg, Ti, Ca, Fe, Ba, and Si) in PM2.5 were measured by ICP-MS and ICP-OES. They presented obvious seasonal variations, with the highest levels in winter and lowest in summer for all seven cities. The sum of 24 elements were ranged from to in these cities. The element mass concentration ratio was the highest in Yingkou in the spring (26.15%), and the lowest in Tieling in winter (3.63%). The highest values of elements in PM2.5 were mostly found in Anshan and Fushun among the studied cities. Positive matrix factorization (PMF) modelling revealed that coal combustion, industry, traffic emission, soil dust, biomass burning, and road dust were the main sources of measured elements in all cities except for Yingkou. In Yingkou, the primary sources were identified as coal combustion, metal smelting, traffic emission, soil dust, and sea salt. Health risk assessment suggested that Mn had non-carcinogenic risks for both adults and children. As for Cr, As, and Cd, there was carcinogenic risks for adults and children in most cities. This study provides a clearer understanding of the regional pollution status of industrial urban agglomeration.


2020 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Mattia Ragnoli ◽  
Gianluca Barile ◽  
Alfiero Leoni ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.


2007 ◽  
Vol 11 (9) ◽  
pp. 756-758 ◽  
Author(s):  
Yurong Huang ◽  
J.P. Heritage ◽  
B. Mukherjee

2017 ◽  
Vol 34 (3-4) ◽  
Author(s):  
Fei Fang ◽  
Yiwei Sun ◽  
Konstantinos Spiliopoulos

AbstractThe goal of this paper is to study organized flocking behavior and systemic risk in heterogeneous mean-field interacting diffusions. We illustrate in a number of case studies the effect of heterogeneity in the behavior of systemic risk in the system, i.e., the risk that several agents default simultaneously as a result of interconnections. We also investigate the effect of heterogeneity on the “flocking behavior” of different agents, i.e., when agents with different dynamics end up following very similar paths and follow closely the mean behavior of the system. Using Laplace asymptotics, we derive an asymptotic formula for the tail of the loss distribution as the number of agents grows to infinity. This characterizes the tail of the loss distribution and the effect of the heterogeneity of the network on the tail loss probability.


1992 ◽  
Vol 6 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Masakiyo Miyazawa

We are concerned with a burst arrival single-server queue, where arrivals of cells in a burst are synchronized with a constant service time. The main concern is with the loss probability of cells for the queue with a finite buffer. We analyze an embedded Markov chain at departure instants of cells and get a kind of lumpability for its state space. Based on these results, this paper proposes a computation algorithm for its stationary distribution and the loss probability. Closed formulas are obtained for the first two moments of the numbers of cells and active bursts when the buffer size is infinite.


Sign in / Sign up

Export Citation Format

Share Document