scholarly journals Control Design for Signal Transduction Networks

2009 ◽  
Vol 3 ◽  
pp. BBI.S2116 ◽  
Author(s):  
Chun-Liang Lin ◽  
Yuan-Wei Liu ◽  
Chia-Hua Chuang

Signal transduction networks of biological systems are highly complex. How to mathematically describe a signal transduction network by systematic approaches to further develop an appropriate and effective control strategy is attractive to control engineers. In this paper, the synergism and saturation system (S-systems) representations are used to describe signal transduction networks and a control design idea is presented. For constructing mathematical models, a cascaded analysis model is first proposed. Dynamic analysis and controller design are simulated and verified.

2004 ◽  
Vol 1 (1) ◽  
pp. 159-169 ◽  
Author(s):  
H. Conzelmann ◽  
T. Sauter ◽  
E.D. Gilles ◽  
F. Allgöwer ◽  
J. Saez-Rodriguez ◽  
...  

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Tomoya Sakaguchi ◽  
Kazuyoshi Harada

In order to investigate cage stress in tapered roller bearings, a dynamic analysis tool considering both the six degrees of freedom of motion of the rollers and cage and the elastic deformation of the cage was developed. Cage elastic deformation is equipped using a component-mode-synthesis (CMS) method. Contact forces on the elastically deforming surfaces of the cage pocket are calculated at all node points of finite-elements on it. The location and pattern of the boundary points required for the component-mode-synthesis method were examined by comparing cage stresses in a static condition of pocket forces and constraints calculated by using the finite-element and the CMS methods. These results indicated that one boundary point lying at the center on each bar is appropriate for the effective dynamic analysis model focusing on the cage stress, especially at the pocket corners of the cages, which are actually broken. A behavior measurement of a polyamide cage in a tapered roller bearing was conducted for validating the analysis model. It was confirmed in both the experiment and analysis that the cage whirled under a large axial load condition and the cage center oscillated in a small amplitude under a small axial load condition. In the analysis, the authors discussed the four models including elastic bodies having a normal eigenmode of 0, 8 or 22, and rigid-body. There were small differences among the cage center loci of the four models. These two cages having normal eigenmodes of 0 and rigid-body whirled with imperceptible fluctuations. At least approximately 8 normal eigenmodes of cages should be introduced to conduct a more accurate dynamic analysis although the effect of the number of normal eigenmodes on the stresses at the pocket corners was insignificant. From the above, it was concluded to be appropriate to introduce one boundary point lying at the center on each pocket bar of cages and approximately 8 normal eigenmodes to effectively introduce the cage elastic deformations into a dynamic analysis model.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Giacomo Innocenti ◽  
Paolo Paoletti

When dealing with linear systems feedback interconnected with memoryless nonlinearities, a natural control strategy is making the overall dynamics linear at first and then designing a linear controller for the remaining linear dynamics. By canceling the original nonlinearity via a first feedback loop, global linearization can be achieved. However, when the controller is not capable of exactly canceling the nonlinearity, such control strategy may provide unsatisfactory performance or even induce instability. Here, the interplay between accuracy of nonlinearity approximation, quality of state estimation, and robustness of linear controller is investigated and explicit conditions for stability are derived. An alternative controller design based on such conditions is proposed and its effectiveness is compared with standard methods on a benchmark system.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.


Sign in / Sign up

Export Citation Format

Share Document