Differences in muscle characteristics of piglets related to the sow parity

2013 ◽  
Vol 93 (4) ◽  
pp. 471-475 ◽  
Author(s):  
A. da Silva ◽  
D. Dalto ◽  
A. Lozano ◽  
E. de Oliveira ◽  
D. Gavioli ◽  
...  

da Silva, A., Dalto, D., Lozano, A., de Oliveira, E., Gavioli, D., de Oliveira, J., Jamile, Romero, N. and da Silva, C. 2013. Differences in muscle characteristics of piglets related to the sow parity. Can. J. Anim. Sci. 93: 471–475. Two hundred forty-three piglets were obtained from 81, 1st through 7th parity sows to determine the influence of sow's parity on piglets’ myogenesis. Those piglets weighing close to or equal to the average weight of their litter were sacrificed, and their semitendinosus muscles were collected to determine the secondary muscle fiber number, area and weight. The number of secondary muscle fibers was correlated with muscle weight (P<0.05; 0.39) and muscle area (P<0.001; 0.63), and muscle area and weight were also correlated (P<0.001; 0.64). Weights of piglets at birth had a correlation with number of muscle fibers (P<0.05; 0.39), muscle area (P<0.001; 0.54) and muscle weight (P<0.001; 0.73). The piglets’ birthweights and muscle weight, muscle area and muscle secondary fiber numbers increased quadratically as parity increased (R 2=0.56, 0.36, 0.44, 0.64 and 0.54; P<0.05, respectively). The results of this study indicate that parity influences the pre-natal development of piglets and that the best muscle characteristics of piglets born from 3rd and 4th parity sows were responsible for their higher weight at birth.

Development ◽  
1990 ◽  
Vol 110 (3) ◽  
pp. 703-711 ◽  
Author(s):  
M.L. Marin ◽  
M.L. Tobias ◽  
D.B. Kelley

The number of muscle fibers in the vocal organ of the adult male African clawed frog, Xenopus laevis, exceeds that of adult females. This sex difference is the result of rapid fiber addition in males between the end of metamorphosis, post-metamorphic stage 0 (PM0) and PM2. At PM0, male and female frogs have similar numbers of laryngeal muscle fibers. Males then add more muscle fibers than females and achieve an adult value that is 1.7 times the female number. Males castrated at PM0 have the same fiber number as females. Ovariectomy at PM0 does not alter muscle fiber addition in females. Gonadectomy at PM2 has no effect on fiber addition in either sex. Females attain masculine muscle fiber number if their ovaries are replaced with a testis at metamorphosis. Exogenous testosterone treatment at PM0 significantly increases fiber number in females but not in males. Exogenous testosterone given at PM2 has no effect on fiber number in females but decreases fiber number in males. We conclude that the testes are necessary for the marked addition of laryngeal muscle fibers seen in male X. laevis between PM0 and PM2. The masculine pattern of muscle fiber addition can be induced in females provided with a testis. Androgen secretion from the testes most probably accounts for masculinization of laryngeal muscle fiber number. After PM2, androgens are no longer necessary for muscle fiber addition and cannot increase fiber number in females.


1984 ◽  
Vol 56 (1) ◽  
pp. 244-247
Author(s):  
B. F. Timson ◽  
G. A. Dudenhoeffer

The purpose of this study was to determine whether skeletal muscle fiber number could be accurately estimated by the determination of mean fiber dry weight (MFD) and total muscle dry weight. The muscles studied were the soleus, plantaris, gastrocnemius, extensor digitorum longus, tibialis anterior, and biceps brachii of the rat, the anterior latissimus dorsi of the chicken, and the flexor carpi radialis of the cat. Bundles of fibers were carefully separated from the muscle following nitric acid digestion (ND) and placed in groups of similar length. MFD determined from 400 to 800 fibers from each group was used to estimate the number of fibers in the remainder of the group. Estimated fiber number was compared with the fiber number determined in the muscle from the contralateral limb by the ND method. No difference in fiber number was observed between the ND method and the MFD estimation method for any of the muscles used in the study. The results indicate that the MFD estimation method is an accurate and relatively rapid method of fiber number determination in skeletal muscle.


2013 ◽  
Vol 45 (20) ◽  
pp. 940-947 ◽  
Author(s):  
Arimantas Lionikas ◽  
Audrius Kilikevicius ◽  
Lutz Bünger ◽  
Caroline Meharg ◽  
Andrew M. Carroll ◽  
...  

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ threefold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring morphological characteristics of the soleus muscle (fiber number and cross sectional area; CSA), by analyzing the transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were four to eight times larger than those of BEL. In substrain BEH+/+, mutant myostatin was replaced with a wild-type allele; however, BEH+/+muscles still were two to four times larger compared with BEL. BEH soleus muscle fibers were two times more numerous ( P < 0.0001) and CSA was two times larger ( P < 0.0001) compared with BEL. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (Chr 1) and four suggestive (Chr 3, 4, 6, and 9) muscle weight QTLs were mapped in a 21-day-old F2 intercross ( n = 296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL; however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed ( P < 0.1) genes and 45,673 single nucleotide polymorphisms and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits and genomic and gene expression differences between BEH and BEL strains provide a promising model for the search for genes involved in muscle growth and musculoskeletal morphogenesis.


1985 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
B. F. Timson ◽  
B. K. Bowlin ◽  
G. A. Dudenhoeffer ◽  
J. B. George

Muscle fiber number, cross-sectional area, and composition were studied in response to enlargement produced by synergistic ablation in the mouse soleus muscle. The effect of the location of a histological section on the number of fibers that appear in the section was also studied using the mouse soleus muscle. Enlargement was produced in the soleus muscle of 15 male and 15 female mice by ablation of the ipsilateral gastrocnemius muscle. Fiber counts, using the nitric acid digestion method, revealed no difference between control and enlarged muscles in male and female mice. Mean fiber area, determined by planimetry, was 49.1 and 34.5% greater following enlargement in male and female mice, respectively. Increase in muscle weight could be totally accounted for by the increase in fiber area following enlargement. A transformation of type II to type I fibers occurred following enlargement for both sexes. Counts of fibers from histological sections revealed that there was a progressive decrease in the fiber number as the section was moved from the belly to the distal end of the muscle. The results of these studies indicate that muscle enlargement in the mouse soleus muscle is due to hypertrophy of the existing muscle fibers.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Min Young Park ◽  
Youn-Chul Ryu ◽  
Chung-Nam Kim ◽  
Kyung-Bo Ko ◽  
Jun-Mo Kim

Estimating meat quality prior to slaughter will be beneficial for the rapid identification of specific traits or poor quality pork compared to a conventional assessment at postmortem. In this study, we identified and quantified myosin heavy chain (MHC) isoforms from a biopsied longissimus thoracis muscle of pigs, and determined their correlation with postmortem muscle fiber characteristics and meat quality. MHC slow and fast isoforms proportions from biopsied samples correlated with postmortem percentage of type I and type IIB muscle fibers, respectively (p < 0.05). The percentage of the biopsied MHC slow isoform showed a positive correlation with pH at 45 min postmortem, and negative correlations with filter-paper fluid uptake and drip loss in pork (p < 0.05). Furthermore, clustering the pigs into three groups based on the biopsied MHC isoform proportions was not only significantly associated with muscle fiber number and proportions of muscle fiber area, but also correlated with pH at 45 min postmortem and the National Pork Producers Council color score (p < 0.05). Collectively, our findings indicate that the biopsied MHC isoforms serve as parameter for estimating meat quality, with the association between the higher proportion of MHC slow isoforms and pH at 45 min postmortem in particular being indicative of better pork quality.


2014 ◽  
Vol 221 (2) ◽  
pp. R13-R29 ◽  
Author(s):  
Laura D Brown

Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present during the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or ‘catch-up’ postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and the risk of cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts toward improving muscle growth early in life to prevent the development of chronic metabolic diseases later in life.


2016 ◽  
Vol 415 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Tatevik Sarkissian ◽  
Richa Arya ◽  
Seda Gyonjyan ◽  
Barbara Taylor ◽  
Kristin White

Sign in / Sign up

Export Citation Format

Share Document