scholarly journals Genetic and genomic analyses of musculoskeletal differences between BEH and BEL strains

2013 ◽  
Vol 45 (20) ◽  
pp. 940-947 ◽  
Author(s):  
Arimantas Lionikas ◽  
Audrius Kilikevicius ◽  
Lutz Bünger ◽  
Caroline Meharg ◽  
Andrew M. Carroll ◽  
...  

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ threefold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring morphological characteristics of the soleus muscle (fiber number and cross sectional area; CSA), by analyzing the transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were four to eight times larger than those of BEL. In substrain BEH+/+, mutant myostatin was replaced with a wild-type allele; however, BEH+/+muscles still were two to four times larger compared with BEL. BEH soleus muscle fibers were two times more numerous ( P < 0.0001) and CSA was two times larger ( P < 0.0001) compared with BEL. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (Chr 1) and four suggestive (Chr 3, 4, 6, and 9) muscle weight QTLs were mapped in a 21-day-old F2 intercross ( n = 296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL; however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed ( P < 0.1) genes and 45,673 single nucleotide polymorphisms and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits and genomic and gene expression differences between BEH and BEL strains provide a promising model for the search for genes involved in muscle growth and musculoskeletal morphogenesis.

1982 ◽  
Vol 53 (5) ◽  
pp. 1234-1238 ◽  
Author(s):  
D. Parsons ◽  
M. Riedy ◽  
R. L. Moore ◽  
P. D. Gollnick

The influence of fasting on fiber number in the soleus muscle (SM) of weanling male and female rats was investigated. For female rats, comparisons were made among groups of animals fed normally, rats fasted and then fed until prefast body weight was regained, and animals that grew to maturity. For male rats, comparisons were made only between control and fasted groups. Prior to the experimental treatments the SM was surgically removed from one leg. There was a 40% loss in body weight after fasting. Although major weight losses occurred in most muscles and organs, there was no change in the SM. Over the same period SM weight increased 31% in normal animals. Total fiber number (direct counts after nitric acid digestion) was unaltered by the treatments. Although wide variation existed between animals, total fiber number between legs for the same animal was closely correlated (r = 0.98). SM weight for male rats calculated from fiber length, cross-sectional area, and total fiber number could account for from 91 to 99% of the total muscle weight. There was no change in fiber number from weaning to maturity. It is concluded that fiber number is unchanged by fasting or during normal maturation.


1985 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
B. F. Timson ◽  
B. K. Bowlin ◽  
G. A. Dudenhoeffer ◽  
J. B. George

Muscle fiber number, cross-sectional area, and composition were studied in response to enlargement produced by synergistic ablation in the mouse soleus muscle. The effect of the location of a histological section on the number of fibers that appear in the section was also studied using the mouse soleus muscle. Enlargement was produced in the soleus muscle of 15 male and 15 female mice by ablation of the ipsilateral gastrocnemius muscle. Fiber counts, using the nitric acid digestion method, revealed no difference between control and enlarged muscles in male and female mice. Mean fiber area, determined by planimetry, was 49.1 and 34.5% greater following enlargement in male and female mice, respectively. Increase in muscle weight could be totally accounted for by the increase in fiber area following enlargement. A transformation of type II to type I fibers occurred following enlargement for both sexes. Counts of fibers from histological sections revealed that there was a progressive decrease in the fiber number as the section was moved from the belly to the distal end of the muscle. The results of these studies indicate that muscle enlargement in the mouse soleus muscle is due to hypertrophy of the existing muscle fibers.


1983 ◽  
Vol 54 (5) ◽  
pp. 1292-1297 ◽  
Author(s):  
P. D. Gollnick ◽  
D. Parsons ◽  
M. Riedy ◽  
R. L. Moore

The relative contribution of increases in fiber area and number was evaluated in the chicken anterior latissimus dorsi (ALD) muscle in which enlargement was induced by hanging a weight on one wing. ALD muscles from wings to which weights had been attached for periods ranging from 6 to 65 days weighed an average of 105% (range 22–225%) more than control muscles. Total muscle fiber number, determined by direct counts after nitric acid digestion and fiber dissection, and the frequency of branched fibers were unchanged by muscular enlargement. Fiber cross-sectional area was greater (P less than 0.01) in the enlarged muscles. A close relationship existed (r = 0.78) between actual muscle weight and weight calculated as the product of fiber volume, total fiber number, and muscle density for the control and enlarged muscles. Histochemical staining revealed a conversion of type IIa to type I fibers in the stretched muscles. These results support the concept that skeletal muscle enlargement in response to chronic overload is produced by hypertrophy of preexisting fibers and not be a formation of new fibers.


2016 ◽  
Vol 23 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Julye Leiko Ywazaki ◽  
Ana Paula Cunha Loureiro ◽  
Talita Gianello Gnoato Zotz ◽  
Luana Ribeiro Nascimento ◽  
Douglas Vizzu Nobre ◽  
...  

ABSTRACT This study analyzed the effects of resistive exercise and/or stretching in the muscle morphology of ovariectomized rats. Seventy-five female Wistar rats (218±22g) were divided into 8 groups: Control (CONTROL, n=5); Ovariectomy/Hysterectomy (OH, n=10): ovariectomized/hysterectomized and then waited 8 weeks for the onset of osteopenia. Stretching (STRET, n=10): manual stretching of the soleus muscle (10 repetitions of 60s), twice weekly; Ovariectomy/Hysterectomy and Stretching (OH+STRET, n=10); Progressive Loading (PL, n=10): 4 sets of 10 repetitions, initial load 50% of body weight, increasing weekly until 70%, three times a week. Progressive Loading and Stretching (PL+STRET, n=10); Ovariectomy/Hysterectomy and Progressive loading exercise (OH+PL, n=10); Ovariectomy/Hysterectomy, Progressive Loading and Stretching (OH+PL+STRET, n=10). Stretching and/or progressive loading were performed for 6 weeks. After 14 weeks, the female rats were euthanized to remove the soleus muscle. The following variables were assessed: body weight; muscle weight and length; number and length of sarcomeres and the muscle fiber cross-sectional area (MFCSA). Comparisons between the groups were performed with ANOVA one-way post hoc Tukey or Kruskall-Wallis (p<0.05). The body and muscle weights of ovariectomized rats submitted to exercise were higher than the intact ones. The OH and OH+PL+STRET increased the muscle length and the serial sarcomere number. OH presented the smallest MFCSA compared to all groups. Ovariectomy/hysterectomy induced sarcopenia, but the exercise's protocols were enough to prevent the loss of MFCSA. The increase in body weight associated to resistive training and stretching enhanced sarcomerogenesis of ovariectomized rats.


1982 ◽  
Vol 47 (3) ◽  
pp. 417-431 ◽  
Author(s):  
K. S. Bedi ◽  
A. R. Birzgalis ◽  
M. Mahon ◽  
J. L. Smart ◽  
A. C. Wareham

1. Male rats were undernourished either during the geslational and suckling periods or for a period of time immediately following weaning. Some rats were killed at the end of the period of undernutrition; others were nutritionally rehabilitated for lengthy periods of time before examination. Two muscles, the extensor digitorum longus (EDL) and soleus (SOL) were studied from each rat. Histochemically-stained transverse sections of these muscles were used to determine total number of fibres, the fibre cross-sectional areas and the relative frequency of the various fibre types.2. All rats killed immediately following undernutrition showed significant deficit sin body-weight, muscle weight and fibre cross-sectional area compared to age-matched controls.3. Animals undernourished during gestation and suckling and then fed normally for 5 months showed persistent and significant deficits in body-weight, muscle weight and total fibre number. There were also significant deficits in mean fibre cross-sectional area of each fibre type except for red fibres in the EDL. No difference in the volume proportion of connective tissue was found.4. Rats undernourished after weaning and then fed ad lib. for approximately 7 months had normal body-and muscle weights. Their muscles showed no significant differences in total fibre number, relative frequency of the various fibre types, fibre size or volume proportion of connective lissue.5. These results indicate that, although the effects on rat skeletal muscle of a period of undernutrition after weaning can be rectified, undernutrition before weaning causes lasting deficits.


1996 ◽  
Vol 80 (3) ◽  
pp. 734-741 ◽  
Author(s):  
E. E. Dupont-Versteegden

The effects of exercise and the combination of exercise and clenbuterol on progression of muscular dystrophy were studied in mdx mice. At 3 wk of age, mdx mice were randomly assigned to sedentary (MS), exercise (ME), or combined exercise and clenbuterol (MEC) groups. Clenbuterol was given in the drinking water (1.0-1.5 mg . kg body weight-1 . day-1), and exercise consisted of spontaneous running activity on exercise wheels. At 3 mo or 1 yr of age, ventilatory function, contractile properties, and morphological characteristics of the soleus (Sol) and diaphragm (Dia) muscles were measured. The mdx mice receiving clenbuterol ran less than the mice without clenbuterol. The combination of clenbuterol and exercise was associated with an increase in Sol muscle weight and a muscle weight-to-body weight ratio of 30-35% compared with the sedentary group and approximately 20% compared to exercise alone. Myosin and total protein concentrations of the Sol and Dia increased in the MEC group at 1 yr of age only. Normalized active tension was increased in the Dia at 1 yr of age in both the ME and MEC groups by approximately 30%. Absolute tetanic tension of the Sol was increased at both 3 mo and 1 yr of age in the MEC compared with the MS group. At 1 yr of age, there was an additional 23% increase compared with the ME group. Fatigability increased in the MEC group by approximately 25% in the Sol and Dia muscles at both ages compared with the MS and ME groups. Results indicate that exercise and exercise plus clenbuterol decrease the progression of muscular dystrophy. However, different mechanisms may be involved because the combination of clenbuterol and exercise resulted in increased fatigability and the development of deformities, whereas exercise alone did not. Therefore, clenbuterol may not be suitable for use in patients with muscular dystrophy.


2000 ◽  
Vol 12 (6) ◽  
pp. 329 ◽  
Author(s):  
S. A. McCoard ◽  
W. C. McNabb ◽  
S. W. Peterson ◽  
S. N. McCutcheon ◽  
P. M. Harris

Cellular development of the adductor femoris muscle from twin and single fetuses was studied at 140 days gestation to evaluate the effect of moderate fetal growth retardation on myofibre development. Twin fetuses had lower bodyweights (13%) and disproportionately small adductor femoris muscle weights (22%) compared with single fetuses. Reduced muscle mass was associated with smaller myofibre cross-sectional areas (CSA) and lower DNA content (22%), indicative of fewer myonuclei and retarded myofibre hypertrophy. Myofibre number and the phenotypic maturation of the myofibres were similar between twins and singletons. These results indicate that even modest growth restriction during fetal life can negatively influence myofibre hypertrophy, highlighting the importance of fetal nutrition for muscle growth. Large muscles, such as the adductor femoris, have intrafascicularly terminating myofibres, which necessitates accurate sampling of the muscle when investigating possible perturbations in morphological characteristics (e.g. between singletons and twins). The second objective of the present study was to investigate the impact of the sampling site on the morphological parameters of the adductor femoris muscle. The apparent total myofibre number decreased from the proximal to the distal region of the adductor femoris muscle. The apparent number of slow-twitch fibres also decreased from the proximal to the medial region, but was not different between the medial and distal regions of the muscle. Similarly, myofibre CSA differed between the medial and distal regions. These results indicate that, particularly with large muscles, such as the adductor femoris, which has intrafascicularly terminating myofibres, single site sampling for the determination of morphological fibre characteristics may generate misleading results and that careful selection of the sampling area may be necessary.


2011 ◽  
Vol 111 (4) ◽  
pp. 1142-1149 ◽  
Author(s):  
Kazuyuki Yasuhara ◽  
Yoshitaka Ohno ◽  
Atsushi Kojima ◽  
Kenji Uehara ◽  
Moroe Beppu ◽  
...  

Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of muscle fibers between both types of mice. However, the regrowth of atrophied soleus muscle in HSF1-null mice was slower compared with that in wild-type mice. Lower baseline expression level of HSP25, HSC70, and HSP72 were noted in soleus muscle of HSF1-null mice. Unloading-associated downregulation and reloading-associated upregulation of HSP25 and HSP72 mRNA were observed not only in wild-type mice but also in HSF1-null mice. Reloading-associated upregulation of HSP72 and HSP25 during the regrowth of atrophied muscle was observed in wild-type mice. Minor and delayed upregulation of HSP72 at mRNA and protein levels was also seen in HSF1-null mice. Significant upregulations of HSF2 and HSF4 were observed immediately after the suspension in HSF1-null mice, but not in wild-type mice. Therefore, HSP72 expression in soleus muscle might be regulated by the posttranscriptional level, but not by the stress response. Evidence from this study suggested that the upregulation of HSPs induced by HSF1-associated stress response might play, in part, important roles in the mechanical loading (stress)-associated regrowth of skeletal muscle.


1990 ◽  
Vol 68 (2) ◽  
pp. 533-539 ◽  
Author(s):  
C. E. Kasper ◽  
T. P. White ◽  
L. C. Maxwell

The objectives were to study morphological adaptations of soleus muscle to decreased loading induced by hindlimb suspension and the effect of run training during the subsequent recovery period. Adult female Wistar rats were kept for 28 days with hindlimbs suspended. For the next 28 days, rats were assigned to a cage-sedentary or daily running group. Compared with control soleus muscles, 28 days of hindlimb suspension reduced the mass and fiber cross-sectional area to 58 and 53% of control values, respectively, and decreased type I fibers from 92 +/- 2 to 81 +/- 2%. During recovery, clusters of damaged fibers were observed in the soleus muscle, and this observation was more pronounced in trained animals. Type IIc fibers appeared transiently during recovery, and their presence was exacerbated with training, as IIc fibers increased to approximately 20% of the total by day 14 of recovery and were no longer evident at day 28. Although muscle wet mass does not differ as a result of mode of recovery at day 14, training transiently decreased the overall fiber area compared with sedentary recovery at this point. By day 28 of recovery the morphological characteristics of soleus muscle in the trained group did not differ from control muscle, whereas in the sedentary group muscle mass and overall fiber cross-sectional area were approximately 14% less than control values.


1999 ◽  
Vol 132 (1) ◽  
pp. 103-116 ◽  
Author(s):  
D. I. KRAUSGRILL ◽  
N. M. TULLOH ◽  
W. R. SHORTHOSE ◽  
K. SHARPE

Three successive experiments, of similar design, were carried out during 1986–88 at Mount Derrimut, Australia. Mature Merino ewes were mated to Poll Dorset rams and then allocated to either a control group (C) or a treatment group (R). Ewes from each treatment were slaughtered 60, 70, 100 or 140 days post-conception and the development of their foetuses was compared in terms of body size and muscle characteristics. In Expts 1 and 2, some ewes were allowed to lamb and the progeny in each group were slaughtered after reaching a body weight of 35 kg, for comparison of growth rates, muscle characteristics and meat quality.In each experiment, treatment extended from mating to day 70 of pregnancy and, during this period, both groups were housed. Ewes in group C were kept as one group and fed ad libitum and ewes in group R were individually penned and fed a restricted ration of the same diet as that given to group C in order to achieve a steady loss of body weight. In Expt 1, this loss was 8 kg but, in Expts 2 and 3, feed intake was controlled according to condition score and, during this period, group R ewes lost 25–35% of their body weight at mating. After day 70, all ewes were kept grazing and were offered supplementary feed at rates sufficient for a steady increase in ewe body weights.Foetuses in group R were lower in body weight (P<0·05), crown-rump length (P<0·05) and girth (P<0·01). However, birth weights and mean ages of the 35 kg lambs at slaughter did not differ significantly between treatments.There were no significant differences between treatments for the semitendinosus (ST) and semimembranosus (SM) muscles in total muscle weight, DNA content, protein content, nor in the ratios of muscle weight[ratio ]DNA and protein[ratio ]DNA. However, there were significant differences between experiments, which indicated that cell size in the ST and SM muscles was lower in Expt 2 than in Expt 1.In day 70 foetuses, the cross-sectional area of α fibres was greater (P<0·05) in group R than in group C but by day 140 the difference was no longer significant. At day 70, there was also a positive correlation (r=0·65, P<0·01) between the cross-sectional area of β fibres and the number of α fibres surrounding each of them. There were no significant differences between treatments at any age in the percentages of βR, αR and αW fibres.Meat from group R lambs was more tender than that from group C lambs as indicated by significantly lower means in the SM muscle for adhesion (P<0·01) and Warner–Bratzler Peak Force (WB PF) measurements (P<0·05).Although some effects of nutritional restriction were found, severe feed shortage in early pregnancy in sheep is unlikely to have significant effects on the production of prime lamb meat provided that adequate nutrition is available during late pregnancy and post-natal growth.


Sign in / Sign up

Export Citation Format

Share Document