AN EMPIRICAL METHOD OF ESTIMATING SOIL TEMPERATURE ON CROPPED LAND ON CANADIAN PRAIRIES

1981 ◽  
Vol 61 (3) ◽  
pp. 565-573 ◽  
Author(s):  
C. A. CAMPBELL ◽  
W. NICHOLAICHUK ◽  
V. O. BIEDERBECK ◽  
H. UKRAINETZ ◽  
J. BOLE

Agronomists often require quick, easy methods of estimating soil temperatures under cereal production, either to fill in missing experimental measurements or to help explain apparent discrepancies in results. Methods available in the literature allow such estimates to be made from meteorological measurements and soil physical characteristics, but these methods are often mathematically complex. In the present paper a simple empirical regression and correlation approach was used to relate soil temperatures under cereal and fallow cropping systems to air temperature, and also to soil temperature at corresponding depths under grass plots at Swift Current, Saskatchewan. Relationships for the top 22.5 cm of soil were developed for the growing season and also for the whole year. Relationships between soil and air temperature were good near the soil surface, but deteriorated with depth even though highly significant r2 values were obtained. The best relationships were obtained between soil temperatures under the cereal system and temperatures under grass (r2 > 0.8 for growing season and > 0.9 for whole year). The relationships between mean daily temperatures under cereals (y) and those under grass at corresponding depths (x) were generally represented by y = x. The best Swift Current relationships for the growing season were used successfully [Formula: see text] to predict data for different years at Swift Current and Scott, Saskatchewan and at Lethbridge, Alberta. The error in prediction at the 10-cm depth was, on the average, 1–3 °C and at the 20-cm depth, 0–4 °C. The relationship developed will be more accurate in drier regions such as the southern prairies.

2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.


1928 ◽  
Vol 18 (1) ◽  
pp. 90-122 ◽  
Author(s):  
E. McKenzie Taylor

1. The soil temperatures in Egypt at a number of depths have been recorded by means of continuous recording thermometers. In general, the records show that the amplitude of the temperature wave at the surface of the soil is considerably greater than the air temperature wave. There is, however, a considerable damping of the wave with depth, no daily variation in temperature being observed at a depth of 100 cm.2. No definite relation between the air and soil temperatures could be traced. The maximum air temperature was recorded in May and the maximum soil temperature in July.3. The amplitude of the temperature wave decreases with increase in depth. The decrease in amplitude of the soil temperature wave is not regular owing to variations in the physical properties of the soil layers. Between any two depths, the ratio of the amplitudes of the temperature waves is constant throughout the year. The amplitude of the soil temperature wave bears no relation to the amplitude of the air temperature wave.4. The time of maximum temperature at the soil surface is constant throughout the year at 1 p.m. The times of maximum temperature at depths below the surface lag behind the time of surface maximum, but they are constant throughout the year. When plotted against depth, the times of maximum at the various soil depths lie on a straight line.


2013 ◽  
Vol 43 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Jana Krčmáŕová ◽  
Hana Stredová ◽  
Radovan Pokorný ◽  
Tomáš Stdŕeda

Abstract The aim of this study was to evaluate the course of soil temperature under the winter wheat canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for phytopathological prediction models, crop development, and yield models. The measurement of soil temperatures was performed at the experimental field station ˇZabˇcice (Europe, the Czech Republic, South Moravia). The soil in the first experimental plot is Gleyic Fluvisol with 49-58% of the content particles measuring < 0.01 mm, in the second experimental plot, the soil is Haplic Chernozem with 31-32% of the content particles measuring < 0.01 mm. The course of soil temperature and its specifics were determined under winter wheat canopy during the main growth season in the course of three years. Automatic soil temperature sensors were positioned at three depths (0.05, 0.10 and 0.20 m under soil surface), air temperature sensor in 0.05 m above soil surface. Results of the correlation analysis showed that the best interrelationships between these two variables were achieved after a 3-hour delay for the soil temperature at 0.05 m, 5-hour delay for 0.10 m, and 8-hour delay for 0.20 m. After the time correction, the determination coefficient reached values from 0.75 to 0.89 for the depth of 0.05 m, 0.61 to 0.82 for the depth of 0.10 m, and 0.33 to 0.70 for the depth of 0.20 m. When using multiple regression with quadratic spacing (modeling hourly soil temperature based on the hourly near surface air temperature and hourly soil moisture in the 0.10-0.40 m profile), the difference between the measured and the model soil temperatures at 0.05 m was −2.16 to 2.37 ◦ C. The regression equation paired with alternative agrometeorological instruments enables relatively accurate modeling of soil temperatures (R2 = 0.93).


2021 ◽  
Author(s):  
Jonas Lembrechts ◽  
Johan van den Hoogen ◽  
Juha Aalto ◽  
Michael Ashcroft ◽  
Pieter De Frenne ◽  
...  

Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8. By using soil temperature time series from over 8500 locations across all of the world’s terrestrial biomes4, we derived global maps of soil temperature-related variables at 1 km resolution for the 0–5 and 5–15 cm depth horizons. Based on these maps, we show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C, with substantial variation across biomes and seasons. Soils in cold and/or dry biomes are annually substantially warmer (3.6°C ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are slightly cooler (0.7 ± 2.3°C). As a result, annual soil temperature varies less (by 17%) across the globe than air temperature. The effect of macroclimatic conditions on the difference between soil and air temperature highlights the importance of considering that macroclimate warming may not result in the same level of soil temperature warming. Similarly, changes in precipitation could alter the relationship between soil and air temperature, with implications for soil-atmosphere feedbacks9. Our results underpin that the impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments.


1993 ◽  
Vol 73 (3) ◽  
pp. 857-870 ◽  
Author(s):  
C. S. Tan ◽  
R. E. C. Layne

The purpose of this study was to assess the effect of two irrigation (trickle vs. no irrigation) and two ground cover treatments (temporary cover vs. permanent sod) on soil temperature in a mature peach [Prunus persica (L.) Batsch] orchard on Fox sand. The soil temperatures at the surface, 5, 10 and 20 cm depths were monitored continuously all-year during 1987 and 1988. Irrigation reduced the fluctuations in soil temperature during summer and winter. The average daily soil temperature in nonirrigated plots during the summer was as high as 34 °C at the soil surface and 28 °C at the 20-cm depth, while corresponding temperatures in irrigated plots were 28 and 26 °C, respectively. The average daily soil temperature in nonirrigated plots without snow cover during the winter was −12 °C at the soil surface and −5 °C at the 20-cm depth, while corresponding temperatures in irrigated plots were −6 and −1 °C, respectively. The effect of irrigation on soil temperature was greatly diminished by snow cover. The soil temperatures at all depths remained around 0 to −2 °C for both nonirrigated and irrigated plots under snow cover, even when the minimum air temperature dropped to −15 °C. The permanent sod cover provided some protection against cold although this effect was masked by snow cover. In the summer, the permanent sod cover reduced average daily soil temperature by 1.5 and 1 °C at the 10 and 20 cm depths. Key words: Prunus persica, snow cover, Fox sand


2002 ◽  
Vol 29 (2) ◽  
pp. 115-122 ◽  
Author(s):  
R. B. Sorensen ◽  
F. S. Wright

Abstract Maintaining soil temperatures at specified levels (below 29 C) in peanut (Arachis hypogaea L.) is vital to crop growth, development, and pod yield. Subsurface drip irrigation (SDI) systems are not designed to wet the soil surface. Possible lack of moisture in the pod zone could result in elevated soil temperatures that could be detrimental to the peanut crop. The objective of this study was to document the response of pod zone soil temperature when irrigated with a SDI system. Thermocouple sensors were inserted at 5-cm soil depth in the crop row and at specified distances from the crop row in SDI and nonirrigated (NI) treatments. Maximum hourly and daily soil temperature data were measured at three locations, one in Virginia and two in Georgia. The maximum daily soil temperature decreased as plant canopy increased. During the first 50 d after planting (DAP), the average maximum soil temperature was 1 to 2 C cooler for both the SDI and NI treatments than the average maximum air temperature. From 50 DAP to harvest, the average maximum soil temperatures for SDI and NI treatments were 6 C cooler than the average maximum air temperature. During pod filling and maturation, the average maximum soil temperature was about 5 C cooler (27 C) for SDI treatments than the maximum air temperature and 2 C cooler than the recommended 29 C. Soil temperature in the NI treatments did exceed 29 C during periods of drought but decreased to values similar to SDI treatments immediately following a rainfall event. Overall, SDI can maintain maximum soil temperatures below critical values (29 C) during peanut fruit initiation to crop harvest.


2013 ◽  
Vol 10 (3) ◽  
pp. 4539-4574
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyzer in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near surface soil temperature at 5 cm most correlated across spring, fall, and the whole season. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but water table also exerted influence with FCH4 highest when water was 2–13 cm below and least when it was at or above the mean peat surface.


2010 ◽  
Vol 56 (No. 9) ◽  
pp. 444-450 ◽  
Author(s):  
M. Jursík ◽  
J. Holec ◽  
J. Soukup ◽  
V. Venclová

This study aimed to describe emergence cycles of selected weed species under Central European conditions in relation to cumulative soil temperatures from the start of the vegetation season. Emergence of Chenopodium album, Echinochloa crus-galli, Galinsoga ciliata, and Abutilon theophrasti was observed from March to October during the period 2001&ndash;2006 at two locations. The beginning of main field emergence was determined as the day when the sum of effective hour temperatures was achieved, and was detected from the second decade of April to early May for C. album, in the second decade of May for E. crus-galli, from late April to the beginning of May for G. ciliata, and from the end of April to mid-May for A. theophrasti. The relationship between cumulative soil surface layer temperature and weed mass field emergence at the beginning of the growing season is very direct (differences &plusmn;7 days) &ndash; but only when soil moisture is sufficient. In a drier spring, the beginning of mass field emergence occurs with 1&ndash;4 weeks of delay and field emergence is usually slower and protracted.


2018 ◽  
Vol 8 (10) ◽  
pp. 1886 ◽  
Author(s):  
Keunbo Park ◽  
Heekwon Yang ◽  
Bang Lee ◽  
Dongwook Kim

A soil temperature estimation model for increasing depth in a permafrost area in Alaska near the Bering Sea is proposed based on a thermal response concept. Thermal response is a measure of the internal physical heat transfer of soil due to transferred heat into the soil. Soil temperature data at different depths from late spring to the early autumn period at multiple permafrost sites were collected using automatic sensor measurements. From the analysis results, a model was established based on the relationship between the normalized cumulative soil temperatures (CRCST*i,m and CST*ud,m) of two different depths. CST*ud,m is the parameter of the soil temperature measurement at a depth of 5 cm, and CRCST*i,m is the parameter of the soil temperature measured at deeper depths of i cm (i = 10, 15, 20, and 30). Additionally, the fitting parameters of the mathematical models of the CRCST*i,m–CST*ud,m relationship were determined. The measured soil temperature depth profiles at a different site were compared with their predicted soil temperatures using the developed model for the model validation purpose. Consequently, the predicted soil temperatures at different soil depths using the soil temperature measurement of the uppermost depth (5 cm) were in good agreement with the measured results.


2008 ◽  
Vol 15 (3) ◽  
pp. 409-416 ◽  
Author(s):  
F. Anctil ◽  
A. Pratte ◽  
L. E. Parent ◽  
M. A. Bolinder

Abstract. The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface) using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods) and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.


Sign in / Sign up

Export Citation Format

Share Document