INFLUENCE DE LA CONDUCTIVITÉ ÉLECTRIQUE DE LA SOLUTION NUTRITIVE SUR LA CROISSANCE ET LE DÉVELOPPEMENT DE LA TOMATE DE SERRE CULTIVÉE AVEC OU SANS ÉCLAIRAGE D’APPOINT

1988 ◽  
Vol 68 (1) ◽  
pp. 267-276 ◽  
Author(s):  
JOSÉE CHARBONNEAU ◽  
ANDRÉ GOSSELIN ◽  
MARC-J. TRUDEL

Tomato plants (Lycopersicon esculentum Mill. ’Vendor’ and ’Carmelo’) were cultivated under different electric conductivities (2, 4 and 6 mS cm−1) of a continuously or intermittently supplied nutrient solution. The plants were grown in an NFT system, with or without supplementary lighting using high-pressure sodium (HPS) lamps. Raising electric conductivity reduced the shoot dry weight but increased root dry weight. The number of fruit on the first truss and the fruit weight were not affected significantly by electric conductivities. The use of supplementary lighting with an electric conductivity of 6 mS cm−1 increased the number of marketable fruit. High electric conductivity modified the mineral composition of leaf tissue mainly P, Ca and Mg. The vegetative growth was reduced and better yield was obtained with tomato plants grown under supplementary lighting and high electric conductivity.Key words: Tomato, supplementary lighting, nutrient solution, HPS, electric conductivity, salinity

Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 775-778 ◽  
Author(s):  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Field studies were conducted to determine the effects of various barnyardgrass populations on growth, yield, and nutrient concentration of transplanted “Jetstar’ tomato. Barnyardgrass densities at 16, 32, and 64 plants/m tomato row were tested in 1982 and 1983. Barnyardgrass shoot fresh weights/unit area increased as density increased. Fresh weight of barnyardgrass shoots ranged from 17 100 kg/ha at 16 plants/m of row to 35 500 kg/ha at 64 plants/m of row. At the vegetative stage, tomato shoot dry weight was unaffected by barnyardgrass. As crop growth progressed, tomato shoot dry weight decreased at all barnyardgrass densities. Season-long interference of barnyardgrass reduced marketable tomato fruit number and fruit weight at all densities compared to weed-free plots. Reductions in marketable fruit weight ranged from 26% to 16 plants/m row to 84% at 64 plants/m row. In 1982, concentrations of N, P, K, Ca, and Mg in tomato shoots were unaffected by season-long interference of barnyardgrass at all densities. However, in 1983, concentrations of N and K decreased and concentration of P increased in tomato leaves as the density of barnyardgrass increased. Concentrations of Ca and Mg in tomato leaves were unaltered by barnyardgrass density.


2013 ◽  
Vol 27 (3) ◽  
pp. 497-501 ◽  
Author(s):  
Aline M. Crespo ◽  
Andrew W. MacRae ◽  
Cristiane Alves ◽  
Tyler P. Jacoby ◽  
Rick O. Kelly

Fresh market tomato is an important and valuable crop in Florida, accounting for 630 million dollars farm-gate value, which was 45% of the total value of the U.S. crop in 2010. In order to maintain or increase its productivity, labeled herbicide alternatives to methyl bromide are important to limiting seed production of weeds emerging between the raised plasticulture beds. A study was conducted inside a greenhouse where carfentrazone was applied as a drench at 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, and 8× and as a subsurface irrigation at 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8×, and 16× rates. The 1× rate equaled the maximum labeled rate of carfentrazone (35.1 g ai ha−1) that would be applied to an area of 0.360 m2. Both the drench and subsurface trials showed an increase in plant injury and reduced growth as the rate of carfentrazone increased. The drench trial, however, was observed to have higher visible injury and greater growth reduction (based on plant measurement) than the subsurface trial, when comparing similar rates. For the 1× rate of carfentrazone in the drench trial vs. the subsurface trial, injury was 66 and 24.5%, respectively. For the 1× rate the tomato plants had estimated growth, based on the curves fit for the data, of 4.8% vs. 39.9% for the drench and subsurface trials, respectively. The subsurface trial better represents what happens in the field when carfentrazone root uptake injury is observed since it is normally observed to be around 10% or less. This still leaves a level of concern; once a 10% injury level in the subsurface trial was estimated to have reduced tomato growth, fruit weight, and total shoot dry weight by 33, 15, and 9.5%, respectively.


1988 ◽  
Vol 2 (4) ◽  
pp. 505-508 ◽  
Author(s):  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Field studies were conducted in 1982 to 1984 to determine the effects of common lambsquarters on growth, yield, and nutrient concentration of transplanted tomato. Common lambsquarters densities ranged from 16 to 64 plants/m tomato row and fresh weight ranged from 26 360 kg/ha at 16 plants/m to 46 000 kg/ha at 64 plants/m row. Common lambsquarters did not affect tomato shoot dry weight at the vegetative stage but decreased the weight at the early fruit stage. Season-long interference of common lambsquarters reduced marketable tomato fruit number and also, marketable fruit weight ranging from 17% at 16 plants/m to 36% to 64 plants/m row. Concentrations of N in tomato leaves were unaltered at vegetative and flowering stages but decreased regardless of common lambsquarters density at early fruit and harvest stages. Weed density did not alter concentrations of P, K, and Ca in tomato leaves.


1986 ◽  
Vol 66 (4) ◽  
pp. 961-970 ◽  
Author(s):  
CLAIRE BOIVIN ◽  
MARC-J. TRUDEL ◽  
ANDRÉ GOSSELIN

Tomato plants (Lycopersicon esculentum Mill. ’Vendor’) were seeded at three different dates between 23 Jan. and 17 Feb. 1984. Young tomato plants received the following supplementary lighting treatments: natural light only, and natural irradiance supplemented by 10, 20 or 30 W m−2 (PAR) for a photoperiod of 17 h. Twenty-nine days after the first seeding date, shoot dry weight of plants grown under 10, 20 or 30 W m−2 was, respectively, 311, 378 and 458% of the control. Shoot dry weight of the third seeding was 159, 181 and 207% of the control for the 10-, 20- or 30-W m−2 treatments, respectively. Early yields were increased by 19,4, 31,2 and 42% when tomato transplants received 10, 20 or 30 W m−2. Total yields were not significantly affected by supplementary lighting provided in the nursery period.Key words: Tomato, supplementary light, growth, productivity, HPS, Lycopersicon esculentum Mill.


2009 ◽  
Vol 44 (12) ◽  
pp. 1673-1681 ◽  
Author(s):  
Sebahattin Çürük ◽  
H. Yıldız Dasgan ◽  
Sedat Mansuroğlu ◽  
Şener Kurt ◽  
Meltem Mazmanoğlu ◽  
...  

The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 769C-769
Author(s):  
J. Lopez ◽  
L.E. Parent ◽  
N. Tremblay ◽  
A. Gosselin

In hydroponic recirculating systems, sulfate ions can accumulate to excessive levels and interfere with other nutrient ions. The objective of this research was to determine the effects of four sulfate concentrations on growth and mineral nutrition of greenhouse tomato plants (Lycopersicon esculentum Mill. cv. Trust). Tomato seeds were sown in flats and subsequently transplanted into rockwool slabs. Ten days after transplanting, plants were given four sulfate concentrations in nutrient solutions (S0 = 0.1, S1 = 5.2, S2 = 10.4, and S4 = 20.8 mM). The plots were arranged in a randomized complete-block design with four replications. Treatment S0 reduced dry weight of the top portion of the plant. A sulfate shortage in the nutrient solution decreased S concentrations in the leaf and decreased fruit number. Activities and concentrations of major ions in solutions expressed in mM or as row-centered logratios were correlated with corresponding foliar concentrations expressed in grams of nutrient per kilogram of dry matter or as row-centered logratios. Data were presented in this manner in order to explore interactive models describing relationships between mineral composition of both nutrient solutions and plant tissues. High concentrations of sulfate ions in the nutrient solution up to 20.8 mM did not affect tomato growth or yield. Tomato plants appeared prone to sulfate deficiency, but tolerant to sulfate concentrations up to 20.8 mM in the nutrient solution.


2013 ◽  
Vol 138 (6) ◽  
pp. 428-432
Author(s):  
Brian A. Kahn

A 2-year study was conducted at Bixby, OK, to examine shoot characteristics of several eggplant (Solanum melongena) cultivars, including the vertical distribution patterns of fruit production, and to examine possible relationships of these traits to aspects of fruit quality. Plants of 11 cultivars of purple-fruited eggplant were field-grown following local production practices. Fourteen harvests of fruit that had reached horticultural maturity were made from 99 plants in each year over a period of ≈45 days per year. On each harvest date, every fruit that was harvested from an individual plant was charted. Before a fruit was severed from the plant, heights were measured from the soil surface to the pedicel attachment and to the blossom end. Each fruit was then weighed and categorized for marketability. On the day after the final harvest, each data plant was measured for height and diameter of the main stem and then severed at soil level for subsequent measurement of shoot dry weight. ‘Classic’, ‘Dusky’, ‘Megal’, and ‘Santana’ were the only cultivars that produced more than 50% marketable fruit in both years. There were no consistent relationships between plant height, stem diameter, or shoot dry weight and fruit quality. For a given cultivar, the fruiting plane was defined as the vertical space in which fruit were found over the course of the harvest period. This was delimited at the top by the mean height above the soil of the point of pedicel attachment and at the bottom by the mean height above the soil of the blossom end. The cultivars differed in fruiting planes, but height of fruit set was relatively unimportant as a determinant of overall fruit quality. Cull fruit usually had blossom ends that were higher off the ground than marketable fruit. The primary reason for cull fruit production was determined for two cultivars: ‘Black Beauty’ had poor fruit color and ‘Black Bell’ was relatively susceptible to fruit rot (primarily caused by Phomopsis vexans). Fruit scarring was found to be a major contributor to cull fruit production. Cultivars differed in fruit scarring in 1 of 2 years, and there was evidence that scarred fruit occurred higher in the crop canopy than marketable fruit.


Author(s):  
Aline das Graças Souza ◽  
Oscar josé Smiderle

The Brazil nut (Bertholletia excelsa H.B.K.) is fast-growing, and can be used in reforestation. However, the use of the species in reforestation is still uncommon, mainly due to production costs, with substrate and fertiliser being the most-costly components. Based on the above, the aim of this study was to evaluate growth and quality in seedlings of the Brazil nut both with and without nutrient solution. The experimental design was completely randomised in a 2 x 10 factorial scheme: treatments with and without the addition of nutrient solution and 10 evaluations at intervals of 45 days. The variables to be analysed were height, stem diameter, dry shoot weight, root dry weight, total dry weight and the Dickson quality index. When analysing shoot dry weight (SDW), a gain of 85% was found from adding the nutrient solution, compared to the absence of nutrient solution, whereas for the variable, root-system dry weight, (RDW) the gain was 43%. The addition of nutrient solution is suggested for accelerating the growth and development of high-quality seedlings of Bertholletia excelsa for commercial use.


2016 ◽  
Vol 47 (4) ◽  
Author(s):  
Al-A'amry & Al-Sulaimawi

An experiment was conducted under greenhouse condition at a farm located in AlImary district east of Baghdad to study the effect of sheep manure water extract on the growth of tomato plants var. Wijdan during the season of 2014-2015.The experiment was consisted of 14 treatments which included of sheep manure with hot (42ْC) and lmbient (20ْC) Water temperature applied either by foliar at 25% and 50% concentration or directly to the soil at 50% and 100% concentration splited to 7 applications control treatments either distilled water as foliar and recommended chemical fertilizers (applied to soil). The experiment was designed according to the random complete block statistical design (RCBD) with three replications Results showed that the chemical treatment and the treatment of hot water extracted significantly when compared with the cold counterpart especially the treatment of hot water extract sheep manure sprayed at 50% and soil applied at 100% concentration in plant height, leaf  number, leaf area , plant  dry weight  and total chlorophyll. In addition, the chemical treatment and the treatment of hot water foliar applied at 50% and soil applied at 100% concentration significantly increased concentration of N ,P and K in leaf tissue while hot extract gave the highest Ca and Mg concentration in leaf tissue.


1969 ◽  
Vol 77 (3-4) ◽  
pp. 229-236
Author(s):  
Julio Lara-Mártez ◽  
Nelia Acosta ◽  
Nydia Vicente

A soil amendment of shrimp shell at dosages of 2 and 4% (v/v) applied 25, 30 and 35 days before planting reduced damage to tomatoes caused by Meloidogyne incognita, decreasing root galling and increasing height and dry weight of plants. The 4% dosage applied 30 or 35 days before planting increased shoot dry weight of tomato plants grown on nematode infested soil in the greenhouse.


Sign in / Sign up

Export Citation Format

Share Document