Inheritance of vernalization response in three populations of spring wheat

1994 ◽  
Vol 74 (4) ◽  
pp. 753-757 ◽  
Author(s):  
P. E. Jedel

Vernalization responses are known to differ among spring wheat (Triticum aestivum L.) genotypes. Three crosses were made to determine the inheritance of vernalization response in the spring wheat cultivars Cajeme 71, Yecora 70, Glenlea, Pitic 62 and Neepawa. Segregation analyses of days to anthesis were made of the F2 generation in a growth room (25/15 °C, 16/8 h). Segregation analysis of the F3 generation was made in a summer greenhouse. Reciprocal crosses between Neepawa and Pitic 62 indicated an early/late/transgressively late ratio of 12:3:1 in the F2 generation. The F3 generation results fitted an early/late/transgressively late/segregating ratio of 4:1:1:10. Based on the segregation of transgressively late types from both crosses, it was concluded that the genes for spring habit in Pitic 62 and Neepawa were different and not maternally inherited. The Glenlea/Pitic 62 cross produced one transgressively late segregant in an F2 population of 97 plants. The data fitted an early/late/transgressively late ratio of 60:3:1, indicating that Glenlea may differ from Pitic at three Vrn loci. Therefore, either Glenlea or Pitic 62 may carry two dominant Vrn alleles. The reciprocal crosses between Yecora 70 and Cajeme 71 did not segregate transgressively late types in the F2 generation. Therefore, those cultivars had a Vrn allele in common. Selection for vernalization response might be useful when introducing exotic germplasm into spring wheat breeding programs and in manipulating maturity responses. Key words: Vernalization, spring wheat, Vrn genes

1986 ◽  
Vol 66 (1) ◽  
pp. 1-9 ◽  
Author(s):  
P. E. JEDEL ◽  
L. E. EVANS ◽  
R. SCARTH

Ten spring wheat (Triticum aestivum L.) cultivars were assessed for the pattern, duration and stability of their response to vernalization and the effect of plant age on receptivity to cold treatment. Cold treatment intervals of 0–6 wk were used to determine the patterns of response. Cajeme 71, Fielder and Pitic 62 were found to have a gradual response with the vernalization requirement satisfied after 4 or 5 wk of cold treatment. Benito, Glenlea, Marquis, and Neepawa had slight but significant responses to longer cold treatments (5–6 wk). Yecora 70, Prelude and Sinton were nonresponsive to the cold treatments. The development of the vernalization responses in Cajeme 71 and Pitic 62 was assessed with cold treatments of 0, 1, 4, 8, 16 and 32 days in a greenhouse study. The pattern of response consisted of a lag period, a period of rapid induction, and finally a plateau when the vernalization requirement was filled. Intermediate temperature treatments of 1–6 days at 15 °C stabilized the vernalization response induced by 2 wk of cold treatment (4 °C) in Fielder and Pitic 62 and by 6 wk of cold treatment in Cajeme 71. Pitic 62 was responsive to cold treatments at ages 0 and 7 days, with the responsiveness decreasing with increasing age. Neepawa, at the ages tested, was relatively non-responsive to the cold treatments.Key words: Wheat (spring), vernalization response, temperature, plant age


Genome ◽  
2016 ◽  
Vol 59 (3) ◽  
pp. 159-165 ◽  
Author(s):  
Ling Qiu ◽  
Zong-xiang Tang ◽  
Meng Li ◽  
Shu-lan Fu

PCR-based rye (Secale cereale L.) chromosome-specific markers can contribute to the effective utilization of elite genes of rye in wheat (Triticum aestivum L.) breeding programs. In the present study, 578 new PCR-based rye-specific markers have been developed by using specific length amplified fragment sequencing (SLAF-seq) technology, and 76 markers displayed different polymorphism among rye Kustro, Imperial, and King II. A total of 427 and 387 markers were, respectively, located on individual chromosomes and chromosome arms of Kustro by using a set of wheat–rye monosomic addition lines and 13 monotelosomic addition lines, which were derived from T. aestivum L. ‘Mianyang11’ × S. cereale L. ‘Kustro’. In addition, two sets of wheat–rye disomic addition lines, which were derived from T. aestivum L. var. Chinese Spring × S. cereale L. var. Imperial and T. aestivum L. ‘Holdfast’ × S. cereale L. var. King II, were used to test the chromosomal specificity of the 427 markers. The chromosomal locations of 281 markers were consistent among the three sets of wheat–rye addition lines. The markers developed in this study can be used to identify a given segment of rye chromosomes in wheat background and accelerate the utilization of elite genes on rye chromosomes in wheat breeding programs.


1980 ◽  
Vol 60 (4) ◽  
pp. 1141-1146 ◽  
Author(s):  
H. G. NASS

The use of harvest index as a selection criterion for grain yield in F2 populations of spring wheat (Triticum aestivum L.) grown at two population densities was investigated. Harvest index was useful in delineating yield differences between lines for both crosses. The F4 lines selected in F2 for a high harvest index yielded about 9% more per plot in 1978 than F4 lines having a low harvest index in F2. Generally, lines selected at the higher commercial seeding rate yielded more than lines selected at the lower plant density. In 1979, a heavy Fusarium infection reduced the mean grain yield of the F6 lines and suppressed any significant response to selection resulting from population density and harvest index in F2. While selection based on high harvest index at low population density can be used to select higher yielding plants it was not as effective as selection at high population density which more closely approximates commercial crop densities. Additional research is needed before the use of harvest index as a selection tool in wheat breeding programs can be recommended for use in Atlantic Canada.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kamal Khadka ◽  
Davoud Torkamaneh ◽  
Mina Kaviani ◽  
Francois Belzile ◽  
Manish N. Raizada ◽  
...  

Abstract Background Appropriate information about genetic diversity and population structure of germplasm improves the efficiency of plant breeding. The low productivity of Nepali bread wheat (Triticum aestivum L.) is a major concern particularly since Nepal is ranked the 4th most vulnerable nation globally to climate change. The genetic diversity and population structure of Nepali spring wheat have not been reported. This study aims to improve the exploitation of more diverse and under-utilized genetic resources to contribute to current and future breeding efforts for global food security. Results We used genotyping-by-sequencing (GBS) to characterize a panel of 318 spring wheat accessions from Nepal including 166 landraces, 115 CIMMYT advanced lines, and 34 Nepali released varieties. We identified 95 K high-quality SNPs. The greatest genetic diversity was observed among the landraces, followed by CIMMYT lines, and released varieties. Though we expected only 3 groupings corresponding to these 3 seed origins, the population structure revealed two large, distinct subpopulations along with two smaller and scattered subpopulations in between, with significant admixture. This result was confirmed by principal component analysis (PCA) and UPGMA distance-based clustering. The pattern of LD decay differed between subpopulations, ranging from 60 to 150 Kb. We discuss the possibility that germplasm explorations during the 1970s–1990s may have mistakenly collected exotic germplasm instead of local landraces and/or collected materials that had already cross-hybridized since exotic germplasm was introduced starting in the 1950s. Conclusion We suggest that only a subset of wheat “landraces” in Nepal are authentic which this study has identified. Targeting these authentic landraces may accelerate local breeding programs to improve the food security of this climate-vulnerable nation. Overall, this study provides a novel understanding of the genetic diversity of wheat in Nepal and this may contribute to global wheat breeding initiatives.


2015 ◽  
Vol 42 (12) ◽  
pp. 1107 ◽  
Author(s):  
P. B. Wilson ◽  
G. J. Rebetzke ◽  
A. G. Condon

Increasing climate variability, particularly variability in the timing and amount of soil water, means that breeding wheat (Triticum aestivum L.) varieties with stable high grain yields is increasingly more challenging. Changing environmental conditions in water-limited rainfed environments will alter genotype ranking to reduce confidence in the identification of consistently higher yielding performers. Greater early vigour (EV) and transpiration efficiency (TE) are two physiological traits that have demonstrated benefits as breeding targets for efficient water-use in Mediterranean in-season water and monsoonal stored water environments, respectively. This Perspective discusses the hypothesis that combining higher TE and greater EV will broaden the adaptation and increase grain yields for wheats grown across most rainfed environments. We examine the physiology underpinning adaptation with greater EV and higher TE, as well as the challenges and potential benefits of deploying these traits in combination. We then discuss how these two traits interact with different environments and, in particular, the different wheat-growing regions of Australia. We conclude that the combination of these two traits is genetically and physiologically feasible, as well theoretically beneficial to average yield in most rainfed environments. Hence, we suggest a strategy for reliably managing the complex genetics underpinning EV and TE when phenotyping and selecting both traits in commercial wheat breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vipin Tomar ◽  
Daljit Singh ◽  
Guriqbal Singh Dhillon ◽  
Yong Suk Chung ◽  
Jesse Poland ◽  
...  

Genomic selection (GS) has the potential to improve the selection gain for complex traits in crop breeding programs from resource-poor countries. The GS model performance in multi-environment (ME) trials was assessed for 141 advanced breeding lines under four field environments via cross-predictions. We compared prediction accuracy (PA) of two GS models with or without accounting for the environmental variation on four quantitative traits of significant importance, i.e., grain yield (GRYLD), thousand-grain weight, days to heading, and days to maturity, under North and Central Indian conditions. For each trait, we generated PA using the following two different ME cross-validation (CV) schemes representing actual breeding scenarios: (1) predicting untested lines in tested environments through the ME model (ME_CV1) and (2) predicting tested lines in untested environments through the ME model (ME_CV2). The ME predictions were compared with the baseline single-environment (SE) GS model (SE_CV1) representing a breeding scenario, where relationships and interactions are not leveraged across environments. Our results suggested that the ME models provide a clear advantage over SE models in terms of robust trait predictions. Both ME models provided 2–3 times higher prediction accuracies for all four traits across the four tested environments, highlighting the importance of accounting environmental variance in GS models. While the improvement in PA from SE to ME models was significant, the CV1 and CV2 schemes did not show any clear differences within ME, indicating the ME model was able to predict the untested environments and lines equally well. Overall, our results provide an important insight into the impact of environmental variation on GS in smaller breeding programs where these programs can potentially increase the rate of genetic gain by leveraging the ME wheat breeding trials.


2020 ◽  
pp. 88-95
Author(s):  
O. Leonov ◽  
Ya. Sharypina ◽  
Z. Usova ◽  
K. Suvorova ◽  
T. Sakhno

The aim of the research is allelic identifi cation of the genes Vrn A1, Vrn B1, Vrn B3, and Vrn D1 in 18 spring wheat samples and 3 lines obtained from winter-spring cross combinations with high carotenoid grain content for winter wheat breeding program. The content of carotenoid pigments in the grain ranged from 0.20 to 8.3 mg/100 g in the analyzed 143 samples of soft wheat. Samples of spring wheat were identifi ed for high content of carotenoids (more than 4.5 mg/100 g of flour): Volgouralskaya, Kinelskaya 61, Lutescens 540, Lutescens 598, Lutescens 575, Lutescens 516, Kinelskaya 2010, Omskaya 41. According to the studies, the presence of the Vrn-A1 allele established in 4 spring wheat samples (Sibiryachka 4, Frontana, Izolda, Dynastiya). The heterozygous state of the Vrn-A1 gene was determined for the Saratovskaya Zolotistaya variety. The presence of the allele Vrn-B1 was identifi ed in the samples Fora, Leningradka, Izolda, Saratovskaya Zolotistaya, Omskiy Tsirkon, Omskaya 41, Lutescens 540. For the samples Lutescens 516, L224-5 the heterozygous state of the locus Vrn-B1was determined. Analysis of the Vrn-B3 gene confi rmed the presence of the Vrn-B3 allele in all tested samples. Only variety Dynastiya carried a dominant allele. The Vrn-D1 gene was identifi ed in a recessive state in samples Fora, Sibiryachka 4, Novosibirskaya 22, Frontana, Leningradka, Kinelskaya 2010, Kinelskaya 61, Volgouralskaya, Omskaya 41, Lutescens 516, Lutescens 540, Lutescens 598, L224–5. In the variety Omskiy Tsircon gene Vrn-D1 was in a heterozygous state. The use of spring carriers of the trait – Samples Omskaya 41 and Lutescens 540, with one dominant gene Vrn-A1, and Lutescens 516, with the dominant allele of the gene Vrn-A1 and polymorphic in the Vrn B1 gene – were the most promising for the winter wheat breeding in the direction of increasing the carotenoids content in flour. Key words: bread wheat, variety, line, vernalization, carotenoids, genes Vrn A1, Vrn B1, Vrn B3, Vrn D1.


1976 ◽  
Vol 27 (1) ◽  
pp. 11 ◽  
Author(s):  
GM Bhatt

A set of 12 genotypes of bread wheat (Triticum aestivum L.) was grown in four different environments involving sites and years. Multivariate analysis according to the D2 technique was performed on six quality characters measured on material harvested from each environment and on the data pooled over four environments. The analysis offered meaningful grouping criteria with regard to quality performance. The clustering pattern was stable in different environments. This environmental stability was found to be independent of the stability of six individual characters. The application of multivariate analysis to selection for quality characters in a wheat breeding program is discussed.


1986 ◽  
Vol 28 (6) ◽  
pp. 991-997 ◽  
Author(s):  
D. W. A. Roberts

'Rescue', 'Cadet', and the 42 reciprocal chromosome substitution lines derived from these two spring wheat cultivars were tested for vernalization response and cold hardiness. Cold hardiness was tested after hardening under a 16-h day for 8 weeks with 6 °C day and 4 °C night temperatures or in the dark for 7 weeks at 0.8 °C followed by 8 weeks at −5 °C. Chromosomes 5A, 5B, 7B, and possibly 2A carried loci for vernalization response. Chromosomes 2A, 5A, and 5B carried loci affecting cold hardiness measured after 8 weeks in the light at 6 °C during the day and 4 °C at night, whereas chromosomes 6A, 3B, 5B, and 5D were involved in cold hardiness after hardening in the dark at 0.8 °C followed by −5 °C. The results suggest that the rank order of cultivars for cold hardiness depends on the hardening technique used since the two different techniques tested had different genetic and presumably somewhat different biochemical bases.Key words: Triticum aestivum L., cold hardiness, vernalization.


Sign in / Sign up

Export Citation Format

Share Document