scholarly journals Nitrogen cycling, profit margins and sweet corn yield under fall cover crop systems

2012 ◽  
Vol 92 (2) ◽  
pp. 353-365 ◽  
Author(s):  
Kelsey A. O'Reilly ◽  
John D. Lauzon ◽  
Richard J. Vyn ◽  
Laura L. Van Eerd

O'Reilly, K. A., Lauzon, J. D., Vyn, R. J. and Van Eerd, L. L. 2012. Nitrogen cycling, profit margins and sweet corn yield under fall cover crop systems. Can. J. Soil Sci. 92: 353–365. In order to improve N best management practices in southwestern Ontario vegetable farming, the effect of cover crops on N dynamics in the fall and spring prior to sweet corn planting and during sweet corn season was assessed. The experiment was a split plot design in a fresh green pea – cover crop – sweet corn rotation that took place over 2 site-years at Bothwell and Ridgetown in 2006–2007 and 2007–2008, respectively. The main plot factor was fall cover crop type with five treatments including oat (Avena sativa L.), cereal rye (Secale cereale L.), oilseed radish (OSR; Raphanus sativus L. var. oleoferus Metzg Stokes), mixture OSR plus cereal rye (OSR&rye) and a no cover crop control. Compared with no cover crop, sweet corn profit margins were higher by $450 ha−1 for oat at Bothwell and $1300 and $760 ha−1 for OSR and OSR&rye, respectively, at Ridgetown. By comparing plant available N over the cover crop season, the cover crops tested were more effective at preventing N loss at Bothwell than at Ridgetown likely due to higher precipitation and sandier soil at Bothwell. Despite differences in site characteristics, cover crops did not result in increased plant available N compared with no-cover during the sweet corn season at either site, indicating that these cover crops will not provide an N credit to the following crop and growers should not modify N fertilizer applications based on cover crops.

2011 ◽  
Vol 25 (3) ◽  
pp. 374-384 ◽  
Author(s):  
Kelsey A. O'Reilly ◽  
Darren E. Robinson ◽  
Richard J. Vyn ◽  
Laura L. Van Eerd

The effectiveness of cover crops as an alternative weed control strategy should be assessed as the demand for food and fiber grown under sustainable agricultural practices increases. This study assessed the effect of fall cover crops on weed populations in the fall and spring prior to sweet corn planting and during sweet corn growth. The experiment was a split-plot design in a pea cover–cover crop–sweet corn rotation with fall cover crop type as the main plot factor and presence or absence of weeds in the sweet corn as the split-plot factor. The cover crop treatments were a control with no cover crop (no-cover), oat, cereal rye (rye), oilseed radish (OSR), and oilseed radish with rye (OSR+rye). In the fall, at Ridgetown, weed biomass in the OSR treatments was 29 and 59 g m−2lower than in the no-cover and the cereal treatments, respectively. In the spring, OSR+rye and rye reduced weed biomass, density, and richness below the levels observed in the control at Bothwell. At Ridgetown in the spring, cover crops had no effect on weed populations. During the sweet corn season, weed populations and sweet corn yields were generally unaffected by the cover crops, provided OSR did not set viable seed. All cover crop treatments were as profitable as or more profitable than the no-cover treatment. At Bothwell profit margins were highest for oat at almost Can$600 ha−1higher than the no-cover treatment. At Ridgetown, compared with the no-cover treatment, OSR and OSR+rye profit margins were between Can$1,250 and Can$1,350 ha−1and between Can$682 and Can$835 ha−1, respectively. Therefore, provided that OSR does not set viable seed, the cover crops tested are feasible and profitable options to include in sweet corn production and provide weed-suppression benefits.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 522c-522
Author(s):  
Tom TenPas ◽  
John Luna

The effect on corn yield of interplanting two different cover crops, Trifolium repens, and Lolium perens into sweet corn, Zea mays, at 4 different times from corn planting was examined. Sweet corn was planted in 30 inch rows, and the cover crop was planted 0, 7, 14, and 21 days afterwards. The study was designed as a complete randomized block experiment with 4 replications. Weed management practices included pre-emergent herbicides and cultivation only treatments. No significant yield differences in corn yields were detected (alpha=.05). Most of the plots had very little weed competition, including those with no herbicide treatment. Earlier planted cover crops were better established at time of corn harvest. Additional work is needed to examine this practice in conditions of greater weed competion.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1161f-1161
Author(s):  
Francis X. Mangan ◽  
Stephen J. Herbert

Field research was conducted in Deerfield, Mass. to study the effects of leguminous cover crops on sweet corn yield. Oat was planted alone and in combination with four leguminous cover crops August 8, 1990. Cover crop residue was disked once and sweet corn seeded April 23, 1991. Each cover crop combination had three rates of nitrogen added in two applications. Sweet corn seeded into stands of hairy vetch (Vicia villosa) yielded the highest of the cover crop combinations. All leguminous cover crop treatments yielded higher than oat alone or no cover crop when no synthetic nitrogen was added. Cover crop combinations were seeded again in the same field plots August 12, 1991. Oat biomass in November was greater where there had been leguminous cover crops or high rates of synthetic nitrogen. Legume growth was retarded in the plots that had previously received high nitrogen. It is thought that legume growth was reduced in the high nitrogen treatments due to increased oat growth and higher soil nitrogen levels which could inhibit root nodulation.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1262-1266 ◽  
Author(s):  
Lidia M. Carrera ◽  
Aref A. Abdul-Baki ◽  
John R. Teasdale

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.


2020 ◽  
Vol 12 (12) ◽  
pp. 5104
Author(s):  
Megan N. Hughes ◽  
Michael R. Langemeier

Utilizing cover crop treatments can have significant agronomic benefits for a farm enterprise. However, implementing this technology introduces additional costs. Data were obtained from a Central Indiana case farm to evaluate the relationship between applied nitrogen and corn yield, and how this relationship is impacted by introducing three different species of cover crops: annual ryegrass, cereal rye, and an oats and radish blend. The resulting information was then translated into a partial budget so that the effects on net returns could be analyzed using historical prices and stochastic modelling. The results showed that the impact on net returns per acre varied among cover crop species. The implementation of annual ryegrass resulted in a negative change to net returns. Conversely, implementing cereal rye or an oats and radish blend resulted in a positive change to net returns, with the largest net benefits accruing to the oats and radish blend.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2031-2038
Author(s):  
Kate A. Ivancic ◽  
Matthew D. Ruark ◽  
Francisco J. Arriaga ◽  
Erin M. Silva

Spring-planted green manure cover crops may provide a nitrogen (N) benefit to a subsequent sweet corn (Zea mays L.) crop, but spring growth and lack of consistent benefits documented in previous studies provide limitations to adoption. Berseem clover (BC; Trifolium alexandrinum) and chickling vetch (CV; Lathyrus sativus L.) are two legumes that could be beneficial when spring-seeded, but they have not been well studied in this context. The objectives of this study were to measure spring-seeded cover crop biomass and N yield, and the subsequent effects on sweet corn yield and response to N fertilizer. The study was conducted in 2014 and 2015, and the experimental design was a randomized complete block split-plot design with cover crop as whole-plot treatments [CV, BC, berseem clover and oat (Avena sativa) mixture (BC + O), oats, and no cover crop] and N rate as split-plot treatments. Cover crop growth and effects on sweet corn production varied greatly between years, with both cover crop and sweet corn biomass greater in 2015, although BC produced very little biomass (<0.7 Mg·ha–1) and thus is not recommended for spring seeding. In 2014, CV resulted in the lowest agronomically optimum N rates (AONRs) compared with no cover crop, suggesting a potential N credit when only having an N yield of 11.6 kg·ha–1, but this effect was not seen in 2015. There was also no evidence that oat would supply N to the subsequent crop. Overall, evidence is lacking that any spring-seeded cover crop will provide a consistent N benefit on sandy soil, and limitations to spring growth may preclude widespread adoption.


Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 588-595 ◽  
Author(s):  
Mayank S. Malik ◽  
Jason K. Norsworthy ◽  
A. Stanley Culpepper ◽  
Melissa B. Riley ◽  
William Bridges

Field experiments were conducted near Blackville, SC, and Tifton, GA, in 2004 and 2005, to evaluate the effect of wild radish and rye cover crops on weed control and sweet corn yield when used in conjunction with lower-than-recommended herbicide rates. Cover crop treatments included wild radish, rye, and no cover crop, alone and in conjunction with half and full rates of atrazine (0.84 and 1.68 kg ai ha−1) plusS-metolachlor (0.44 and 0.87 kg ai ha−1) applied before sweet corn emergence. Florida pusley, large crabgrass, spreading dayflower, ivyleaf morningglory, and wild radish infested the test sites. Wild radish and rye cover crops without herbicides reduced total weed density by 35 and 50%, respectively, at 4 wk after planting (WAP). Wild radish in conjunction with the full rate of atrazine plusS-metolachlor controlled Florida pusley, large crabgrass, and ivyleaf morningglory better than rye or no cover crop treated with a full herbicide rate in 2004 at Blackville. In 2005, at Blackville, weed control in sweet corn following wild radish cover crop plots alone was not different from that following rye. Wild radish or rye in conjunction with a half or full rate of atrazine andS-metolachlor controlled > 95% Florida pusley, wild radish, and large crabgrass in sweet corn at Tifton during both years. Ten glucosinolates, potential allelopathic compounds, were identified in wild radish, including glucoiberin, progoitrin, glucoraphanin, glucoraphenin, glucosinalbin, gluconapin, glucotropaeolin, glucoerucin, glucobrassicin, and gluconasturtin. Sweet corn yields at Blackville and Tifton following wild radish or rye cover crops were similar between the half and full rates of atrazine plusS-metolachlor. Sweet corn in wild radish or rye cover crop plots without herbicides produced less-marketable ears than herbicide-treated plots, indicating that a combination of cover crops and herbicides are required to optimize yields and to obtain desirable weed control.


2019 ◽  
Vol 35 (6) ◽  
pp. 608-625 ◽  
Author(s):  
Tara Pisani Gareau ◽  
Christina Voortman ◽  
Mary Barbercheck

AbstractWe conducted a 3-yr cropping systems experiment in central Pennsylvania, USA, to determine the effects of initial cover crop species, tillage and resulting environmental variables on the activity–density (A–D), species richness, community composition and guild composition of carabid beetles (Carabidae: Coleoptera) during the transition from conventional to organic production. We compared four systems in a factorial combination of a mixed perennial sod (timothy, Phleum pratense L.) and legumes (red clover, Trifolium pratense L.) or annual cereal grain (cereal rye, Secale cereale L.) followed by a legume (hairy vetch, Vicia villosa Roth) as initial cover crops, and soil management using full tillage (moldboard plow) or reduced tillage (chisel plow) implemented in soybeans followed by maize in the subsequent year. The experiment was established twice, first in autumn 2003 (S1) and again in autumn 2004 (S2) in an adjacent field, in a randomized complete-block design with four replicates in each Start. We collected a total of 2181 adult carabid beetles. Approximately 65% of the carabid beetles collected were from six species. Indicator Species Analysis showed that several carabid species were indicative of treatment, e.g., Poecilus chalcites was a strong indicator for treatments with an initial cereal rye cover crop. Eleven environmental variables explained variation in carabid A–D, richness and the A–D of species categorized by size class and dominant trophic behavior, respectively, but varied in significance and direction among guilds. Soil moisture was a significant effect for total carabid A–D in both S1 and S2. Redundancy analyses revealed some similar and some idiosyncratic responses among informative species for the cover crop×tillage treatments through the 3-yr rotation. The most consistent factors that distinguished species assemblages among years and treatments were the number and intensity of soil disturbances and perennial weed density. The consistent occurrence of soil disturbance indicators in multivariate analyses suggests that future studies that aim to compare the effects of nominal soil management treatments on carabid beetles and other soil-associated arthropods should quantify frequency and intensity of disturbance associated with crop management practices.


2020 ◽  
Vol 34 (6) ◽  
pp. 787-793
Author(s):  
Stephanie A. DeSimini ◽  
Kevin D. Gibson ◽  
Shalamar D. Armstrong ◽  
Marcelo Zimmer ◽  
Lucas O.R. Maia ◽  
...  

AbstractField experiments were conducted in 2017 and 2018 at two locations in Indiana to evaluate the influence of cover crop species, termination timing, and herbicide treatment on winter and summer annual weed suppression and corn yield. Cereal rye and canola cover crops were terminated early or late (2 wk before or after corn planting) with a glyphosate- or glufosinate-based herbicide program. Canola and cereal rye reduced total weed biomass collected at termination by up to 74% and 91%, in comparison to fallow, respectively. Canola reduced horseweed density by up to 56% at termination and 57% at POST application compared to fallow. Cereal rye reduced horseweed density by up to 59% at termination and 87% at POST application compared to fallow. Canola did not reduce giant ragweed density at termination in comparison to fallow. Cereal rye reduced giant ragweed density by up to 66% at termination and 62% at POST application. Termination timing had little to no effect on weed biomass and density reduction in comparison to the effect of cover crop species. Cereal rye reduced corn grain yield at both locations in comparison to fallow, especially for the late-termination timing. Corn grain yield reduction up to 49% (4,770 kg ha–1) was recorded for cereal rye terminated late in comparison to fallow terminated late. Canola did not reduce corn grain yield in comparison to fallow within termination timing; however, late-terminated canola reduced corn grain yield by up to 21% (2,980 kg ha–1) in comparison to early-terminated fallow. Cereal rye can suppress giant ragweed emergence, whereas canola is not as effective at suppressing large-seeded broadleaves such as giant ragweed. These results also indicate that early-terminated cover crops can often result in higher corn grain yields than late-terminated cover crops in an integrated weed management program.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 664-668 ◽  
Author(s):  
John Z. Burket ◽  
Delbert D. Hemphill ◽  
Richard P. Dick

Cover crops hold potential to improve soil quality, to recover residual fertilizer N in the soil after a summer crop that otherwise might leach to the groundwater, and to be a source of N for subsequently planted vegetable crops. The objective of this 5-year study was to determine the N uptake by winter cover crops and its effect on summer vegetable productivity. Winter cover crops [red clover (Trifolium pratense L.), cereal rye (Secale cereale L. var. Wheeler), a cereal rye/Austrian winter pea (Pisum sativum L.) mix, or a winter fallow control] were in a rotation with alternate years of sweet corn (Zea mays L. cv. Jubilee) and broccoli (Brassica oleracea L. Botrytis Group cv. Gem). The subplots were N rate (zero, intermediate, and as recommended for vegetable crop). Summer relay plantings of red clover or cereal rye were also used to gain early establishment of the cover crop. Cereal rye cover crops recovered residual fertilizer N at an average of 40 kg·ha-1 following the recommended N rates, but after 5 years of cropping, there was no evidence that the N conserved by the cereal rye cover crop would permit a reduction in inorganic N inputs to maintain yields. Intermediate rates of N applied to summer crops in combination with winter cover crops containing legumes produced vegetable yields similar to those with recommended rates of N in combination with winter fallow or cereal rye cover crops. There was a consistent trend (P < 0.12) for cereal rye cover crops to cause a small decrease in broccoli yields as compared to winter fallow.


Sign in / Sign up

Export Citation Format

Share Document