EFFECT OF MIXING VARYING QUANTITIES OF DICYANDIAMIDE WITH AMMONIUM FERTILIZERS ON NITRIFICATION OF AMMONIA IN SOILS

1964 ◽  
Vol 44 (2) ◽  
pp. 254-259 ◽  
Author(s):  
G. R. Reddy

A series of laboratory experiments were conducted to evaluate the effect of dicyandiamide on the transformation of fertilizer nitrogen in Georgia soils. These studies indicated that dicyandiamide inhibited nitrification of ammonium sulphate at all rates utilized. The inhibitory action of dicyandiamide was attributed to its toxic effect on the nitrifying organisms which failed to function in the presence of dicyandiamide. Complete nitrification eventually occurred but only after a long period.Decomposition of dicyandiamide was more rapid in fine-textured Cecil sandy loam containing relatively more organic matter than on the coarse-textured and low organic matter Lakeland sandy soil. Soil texture and organic matter content are two factors that must be considered in evaluating the length of time that dicyandiamide will inhibit nitrification in any given soil.Sucrose apparently provided a quickly available source of energy for soil microorganisms that utilized the dicyandiamide as a source of nitrogen and preventing its inhibiting effect on nitrification. The nitrogen from the dicyandiamide was eventually mineralized as indicated by the higher total ammonium and nitrate nitrogen found at the end of incubation period.

1976 ◽  
Vol 56 (3) ◽  
pp. 129-138 ◽  
Author(s):  
A. J. MACLEAN

The Cd concentration in 10 plant species grown in a neutral surface soil (0.65 ppm Cd) varied from 0.18 ppm in potato tubers to 0.99 ppm in soybean roots on a dry matter basis. Addition of 5 ppm Cd increased the concentrations in the plants markedly and they were particularly high in lettuce (10.36 ppm) and tobacco leaves (11.57 ppm). Cd concentrations tended to be lower in the edible portion (seed, fruit, tubers) than in other plant parts. Added Cd affected yields in only a few instances. But in another experiment, Cd added at a rate of 5 ppm to five soils decreased the yield of lettuce in most instances. In a comparison of results for two similarly managed sandy loam soils, nearly neutral in reaction but differing in organic matter content (2.17 vs. 15.95% organic C), the concentration of Cd was lower in lettuce grown in the soil with the higher amount of organic matter. The Cd content of the lettuce was reduced by liming some of the acid soils. Addition of Cd increased the concentration of Zn in the plants appreciably, but added Zn did not affect Cd uptake. In an incubation experiment comprising five soils, DTPA (diethylenetriamine-pentaacetic acid) extractable Cd decreased with liming of three Cd-treated acid soil samples. In comparisons of two sandy loam soils and of surface and subsoil layers of a sand, extractable Cd increased with higher amounts of soil organic matter.


1982 ◽  
Vol 62 (1) ◽  
pp. 165-175 ◽  
Author(s):  
C. R. DE KIMPE ◽  
M. BERNIER-CARDOU ◽  
P. JOLICOEUR

Twenty-one topsoils, with texture varying from sandy loam to clay and organic matter content ranging from 1.6 to 11.9%, were submitted to compaction and settling at different moisture contents where dry bulk density was determined. Under compaction, the density curve went through a maximum while a minimum was observed in the case of settling. Optimum moisture contents corresponding to these two characteristic densities were almost the same. The most important physical properties affecting soil behavior under compaction and settling were found to be water retention properties at low matric potential which themselves depended primarily on organic matter content. Samples submitted to compaction had saturated hydraulic conductivities less than 1 cm/h, while after settling, Ksat measurements ranged from 0.8 to 234 cm/h. Organic matter played an important role in reducing the effects of compaction, and moisture content alone was not sufficient to predict the best conditions for workability in the fields.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 880
Author(s):  
Mohammad Reza Chaichi ◽  
Marcus Turcios ◽  
Mina Rostamza

Non-ionic surfactants have been well researched as a tool to ameliorate water repellent conditions. However, few studies have evaluated the risks and benefits of non-ionic surfactant applications in wettable soil. The objective of this study was to evaluate the effects of a surfactant in modifying the wetting pattern in soils of different textures and organic matter contents. The experimental treatments consisted of (1) four different soil textures including sandy, sandy loam, sandy clay loam and silt loam, (2) four different organic matter contents (0.2, 0.7, 1.2 and 1.7% by weight), and (3) irrigation water treatments with or without surfactant (IrrigAid Gold). The experiment was carried out in Plexiglas boxes with one drip emitter under the soil surface. The results demonstrated the superiority of surfactant application on increasing water distribution in the soil profile for all soil textural classes. Silt loam texture had the highest side wetted area and wetting depth 45min after the initiation of irrigation. Upward capillary water movement and top wetted area significantly decreased in the surfactant treatment across all soil textures except in sandy soil. As organic matter content increased, top wetted area decreased. These findings clarified the potential ability of surfactant in increasing water infiltration in non-repellent soil in an in vitro system.


1961 ◽  
Vol 7 (4) ◽  
pp. 507-513 ◽  
Author(s):  
E. Strzelczyk

This study represents an attempt to correlate the low numbers of Azotobacter in rhizosphere and root-free soils at the Central Experimental Farm, Ottawa, with the incidence of bacterial and actinomycete antagonists of this organism. Wheat, radish, and onion were grown in the greenhouse in two soils varying greatly in fertility and organic matter content, and isolations of bacteria and actinomycetes were made periodically for testing against Azotobacter. It was found that rhizosphere soil contained greater numbers of microorganisms antagonistic to Azotobacter than root-free soil. Of the three crops used wheat exerted the least effect. In all the tests numbers of antagonists were greater in the fertile Granby sandy loam than in the infertile Upland sand. The results correlated well with the Azotobacter populations in these soils as reported in the first paper of this series.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Chris H. Tingle ◽  
David R. Shaw ◽  
Patrick D. Gerard

Laboratory studies were conducted to evaluate14C-flumetsulam mobility in two Mississippi soils of varied texture and organic matter content following delays in irrigation. Mobility was evaluated using packed soil columns, 25 cm deep, under unsaturated–saturated flow conditions. Irrigation timings included 0, 3, and 5 d after flumetsulam application. Flumetsulam mobility (defined as the amount collected in leachate) decreased from 45% to no more than 20% of the applied in the Prentiss sandy loam soil when irrigation was delayed 3 or 5 d. With the Okolona soil, flumetsulam recovery in the leachate was 21, 14, and 6%, respectively when irrigation occurred 0, 3, and 5 d after application. Flumetsulam proved to be mobile when irrigation immediately followed application, with 6 to 45% recovered in the leachate from all soils evaluated. The Prentiss soil retained 6% of the applied flumetsulam in the upper 5 cm and the Okolona soil retained 22% when irrigation immediately followed flumetsulam application. When the irrigation interval was delayed at least 3 d, the Okolona soil retained 40% in the upper 5 cm, whereas the Prentiss soil retained 10%. Flumetsulam mobility was dependent on irrigation timing and soil type.


1980 ◽  
Vol 60 (1) ◽  
pp. 5-11 ◽  
Author(s):  
M. K. PRITCHARD ◽  
E. H. STOBBE

The persistence and phytotoxicity of dinitramine (n4, N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), fluchloralin (N-(2-chloroethyl)-2, 6-dinitro- N-propyl-4- (trifluoromethyl)aniline), profluralin (N-(cyclopropylmethyl)α,α,α-trifluoro-2, 6-dinitro-N-propyl-p-toluidine), and trifluralin (α,α,α-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine) were compared in three Manitoba soils: sandy loam, clay loam and clay. The phytotoxicities of all chemicals decreased with increased organic matter. The phytotoxicities of the dinitroanilines were: dinitramine > trifluralin > profluralin = fluchloralin. Increased organic matter increased the persistence of trifluralin and fluchloralin. Profluralin and dinitramine persistence increased with increased clay and organic matter content. Profluralin was the most persistent chemical over all soil types. Under environmental conditions that retard dinitroaniline loss from Manitoba soils, residues of some of these herbicides may cause crop injury the year after application.


1990 ◽  
Vol 4 (2) ◽  
pp. 279-283 ◽  
Author(s):  
Michael R. Blumhorst ◽  
Jerome B. Weber ◽  
Len R. Swain

Field experiments were conducted on six loam and sandy loam soils to study the influence of various soil parameters on atrazine, cyanazine, alachlor, metolachlor, and pendimethalin efficacy. Herbicidal activity was highly correlated to the soil organic content. Humic matter content was equally or better correlated (r = 0.70 to 0.91) with herbicide bioactivity than was organic matter content (r = 0.66 to 0.84). Regression equations were determined which allow herbicide rate recommendations for 80% weed control to be calculated based on soil humic matter or organic matter levels.


2020 ◽  
Vol 12 (1) ◽  
pp. 143-153
Author(s):  
Risikat N. AHMED ◽  
Sesan M. SOBA ◽  
Mercy O. BAMIGBOYE ◽  
Kamoldeen A. AJIJOLAKEWU

The present research aimed at screening various soils within Ilorin metropolis for antibiotic producing actinomycetes. The objectives of the study were to determine physiochemical parameters of soils, the occurrence of actinomycetes in soils, antibacterial potentials and identity of isolates. Soil parameters such as pH, temperature, moisture, organic matter and soil type were evaluated following standard procedures. Selective isolation to determine the occurrence of actinomycetes was performed by soil dilution using pour plate technique on starch casein agar. Preliminary antibacterial screening against 10 clinical test bacteria was performed using cross streak method. All isolates were initially identified based on morphological and biochemical characteristics, while the most bioactive isolates were further identified by molecular means. The soils were alkaline, with temperatures between 29 °C and 31 °C, moisture was in range of 0.72 ± 0.07c and 6.62 ± 0.42b. Highest organic matter content was 32.13 ± 0.20a with soil types mostly loamy and sandy loam. Ten actinomycetes (SM1 - SM10) were isolated, with the most frequently occurring isolate being SM3 and SM5 (16.7%). SM5 was the most active, inhibiting 9 out of 10 tests, with the highest inhibition against Staphylococcus aureus 25923 (24 mm ± 0.15a). All isolates were identified as Streptomyces by morphology and biochemical tests. Based on nucleotide similarity searches and phylogeny, two bioactive Streptomycetes were suggested as novel strains and thus named as Streptomyces bottropensis UIL RNA (SM5) and S. flavoviridis UIL RNA(SM7), which may serve as promising sources of antibiotics. Actinomycetes from Ilorin metropolis demonstrated broad spectrum of antibacterial activity against clinical test bacteria.


Sign in / Sign up

Export Citation Format

Share Document