scholarly journals DRAINAGE OF AN IRRIGATED SALINE SOIL IN ALBERTA

1982 ◽  
Vol 62 (2) ◽  
pp. 387-396
Author(s):  
D. R. BENNETT ◽  
G. R. WEBSTER ◽  
B. A. PATERSON ◽  
D. B. HARKER

A shallow subsurface drainage system effectively controlled a high water table and reduced salinity in an irrigated soil near Magrath, Alberta. Plastic corrugated tubing was installed in 1976 at depths of 1.1–1.5 m and spacings of 15 and 30 m in a moderately saline soil. During the irrigation period, the water table rose to within 0.3 m of the surface but was lowered to pre-irrigation levels within 48 h. The water table was maintained at, or below, the depth of the drains between irrigations. The 15- and 30-m spacings of the drain lines were equally effective in providing water table control in this lacustrine soil which was underlain by a coarse sand and gravel layer. Salinity levels were decreased substantially only within the surface 0.3-m soil depth. Quality of the drainage effluent remained constant throughout the growing season with only small dilution effects detected during irrigations. Barley yields increased to 3900 kg/ha in 1978, 2 yr following drainage of this saline soil which had been out of crop production for 20 yr.

1991 ◽  
Vol 12 (2) ◽  
Author(s):  
S. Bradford ◽  
J. Letey ◽  
G.E. Cardon

1999 ◽  
Vol 9 (3) ◽  
pp. 402-408 ◽  
Author(s):  
Ronald B. Sorensen ◽  
Tim L. Jones

Soil depth for water uptake in pecan trees [Carya illinoensis (Wangenh.) C. Koch `Western Schley'] is considered to be <100 cm (3.2 ft) for sites that have high water tables. The objective of this research was to determine the water uptake pattern of pecan trees grown on sites with a deep water table [>30 m (100 ft)] and irrigated at 50 kPa (0.5 bar). Trees (15- to 20-year-old trunks) were transplanted into laser-leveled terraces in 1986. Two terraces (T) were selected and irrigated (1994 and 1995) at 50 kPa (T5) and farmer controlled [T6, weekly at ≈30 kPa (0.3 bar)]. Soil water content was measured on a 1.3 by 1.3 m (4 ft by 4 ft) grid for one tree in each terrace using a neutron probe. In 1994, the average soil depth for water uptake was 75 (2.5 ft) and 62 cm (2.0 ft) for T5 and T6 respectively. In 1995, the average soil depth for water uptake was 150 cm (5 ft) on T5 and 130 cm (4 ft) on T6. The total quantity of water removed below 140 cm (4.6 ft) soil depth was minor (<15%) when compared with the total water removed between 0 and 140 cm depth. T5 showed a deeper (260 cm; 8.5 ft) and wider (3.0 to 5.0 m; 10 to 16 ft) water uptake pattern compared with T6. Thus, pecan trees growing on these coarse soils with a deep water table and irrigated at 50 kPa have an effective root zone of ≈140 to 150 cm (4.6 to 5.0 ft).


2011 ◽  
Vol 19 (2) ◽  
pp. 409-414 ◽  
Author(s):  
Feng-Jiao MA ◽  
Li-Mei TAN ◽  
Hui-Tao LIU ◽  
Shu-Hui YU ◽  
Hong-Juan LIU ◽  
...  

1971 ◽  
Vol 2 (2) ◽  
pp. 79-92 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
H. C. ASLYNG

The lysimeter installation described comprises 36 concrete tanks each with a soil surface of 4 m2. The installation is useful for plant growth experiments under natural conditions involving different treatment combined with various controlled water supplies. The ground installation is at least 20 cm below the soil surface and tillage can be done with field implements. The lysimeter tanks are provided with a drainage system which can drain the soil at the bottom (100 cm depth) to a tension of up to 100 cm. A constant ground-water table at less than 100 cm soil depth can also be maintained. The soil moisture content at different depths is determined from an underground tunnel by use of gamma radiation equipment in metal tubes horizontally installed in the soil. Rainfall is prevented by a movable glass roof automatically operated and controlled by a special rain sensor. Water is applied to the soil surface with a special trickle irrigation system consisting of a set of plastic tubes for each lysimeter tank and controlled from the tunnel. Fertilizers in controlled amount can be applied with the irrigation water.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 775
Author(s):  
Carlos Esse ◽  
Francisco Correa-Araneda ◽  
Cristian Acuña ◽  
Rodrigo Santander-Massa ◽  
Patricio De Los Ríos-Escalante ◽  
...  

Pilgerodendron uviferum (D. Don) Florin is an endemic, threatened conifer that grows in South America. In the sub-Antarctic territory, one of the most isolated places in the world, some forest patches remain untouched since the last glaciation. In this study, we analyze the tree structure and tree diversity and characterize the environmental conditions where P. uviferum-dominated stands develop within the Magellanic islands in Kawésqar National Park, Chile. An environmental matrix using the databases WorldClim and SoilGrids and local topography variables was used to identify the main environmental variables that explain the P. uviferum-dominated stands. PCA was used to reduce the environmental variables, and PERMANOVA and nMDS were used to evaluate differences among forest communities. The results show that two forest communities are present within the Magellanic islands. Both forest communities share the fact that they can persist over time due to the high water table that limits the competitive effect from other tree species less tolerant to high soil water table and organic matter. Our results contribute to knowledge of the species’ environmental preference and design conservation programs.


2021 ◽  
Vol 13 (14) ◽  
pp. 7642
Author(s):  
Joanna Sender ◽  
Danuta Urban ◽  
Monika Różańska-Boczula ◽  
Antoni Grzywna

The Łęczna-Włodawa Lake District is one of the most valuable natural regions in Europe. It is an area of numerous lakes, peat bogs, swamps and forests, which has been undergoing intensive transformation for decades. Among the largest projects were the creation of the Wieprz Krzna Canal system along with the drainage system and the transformation of natural lakes into retention reservoirs. Among the transformed lakes is Lake Wytyckie. The land was used for analyses near the lake, and floristic and habitat analyses were carried out within the boundaries of the contemporary embankment. The studies were carried out from the 1950s, when the lake functioned as a natural reservoir, through to the 1980s (the transformation of the lake), to the 2020s. Lake Wytyckie was transformed into a retention reservoir by increasing its size and flooding the areas inhabited mainly by peat bog, meadow and forest vegetation, which contributed to the impoverishment of both species and habitat diversity of the area, while it increased the nutrient richness of the water. This was reflected both in the decline in the value of individual diversity indices as well as in the ecological index numbers. In the first period of the research, the area was dominated by wetlands, not drained, with a large variety of species that preferred good lighting conditions. Additionally, the habitat was characterized by low reaction, temperature and trophic values. In the following period, there was an increase in the depth of the water of the reservoir, characterized by high water visibility values, which contributed to the presence of protected species, as did the low moisture content of the areas within the embankment and a neutral pH. The factors currently influencing the formation of the vegetation structure are the high humidity of the entire embankment area, the increase in pH, and the significant increase in the share of built-up areas in the immediate vicinity.


1971 ◽  
Vol 61 (3) ◽  
pp. 579-590 ◽  
Author(s):  
William Enkeboll

abstract Soil and water conditions had an effect on the degree of damage to structures. Most structures were located on alluvium with a high water table. Settlements occurred in dike and causeway fill in Chimbote harbor. Severe problems to communication occurred in some areas through embankment failures and road slides.


2017 ◽  
Vol 21 (1) ◽  
pp. 69-81
Author(s):  
kazem Esmaili ◽  
Mohammad ali Maddahzadeh. ◽  
Bijan Ghahraman ◽  
◽  
◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11766
Author(s):  
Mao Yang ◽  
Runya Yang ◽  
Yanni Li ◽  
Yinghua Pan ◽  
Junna Sun ◽  
...  

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.


Sign in / Sign up

Export Citation Format

Share Document