Mycorrhizal colonization of flax under long-term organic and conventional management

2004 ◽  
Vol 84 (4) ◽  
pp. 1097-1099 ◽  
Author(s):  
M. H. Entz ◽  
K. R. Penner ◽  
J. K. Vessey ◽  
C. D. Zelmer ◽  
J. R. Thiessen Martens

Arbuscular mycorrhizal fungi are of particular interest in organic agricultural systems. We studied the effects of crop rotation and crop management system (conventional vs. organic) on mycorrhizal colonization of flax roots, in the 12th year of a long-term crop rotation trial. Colonization was higher in organic treatments than conventional, possibly due to decreased P availability. There was a highly significant rotation × management system interaction, which may be explained by differences in the abundance of mycorrhizal and non-mycorrhizal weed species between the two management systems. Further research is required before stronger conclusions can be made. Key words: Crop rotation, arbuscular mycorrhizal fungi, flax, wild mustard, host-plant dynamics, organic agriculture

2021 ◽  
Author(s):  
Maede Faghihinia ◽  
Yi Zou ◽  
Yongfei Bai ◽  
Martin Dudáš ◽  
Rob Marrs ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) are the predominant type of mycorrhizal fungi in roots and rhizosphere soil of grass species worldwide. Grasslands are currently experiencing increasing grazing pressure, but it is not yet clear how grazing intensity and host plant grazing preference by large herbivores interact with soil- and root-associated AMF communities. Here, we tested whether the diversity and community composition of AMF in the roots and rhizosphere soil of two dominant perennial grasses grazed differently by livestock change in response to grazing intensity. We conducted a study in a long-term field experiment in which seven levels of field-manipulated grazing intensities were maintained for 13 years in a typical steppe grassland in northern China. We extracted DNA from the roots and rhizosphere soil of two dominant grasses, Leymus chinense (Trin.) Tzvel. and Stipa grandis P. Smirn, with contrasting grazing preference by sheep. AMF DNA from root and soil samples were then subjected to molecular analysis. Our results showed that AMF α-diversity (richness) at the virtual taxa (VT) level varied as a function of grazing intensity. Different VTs showed completely different responses along the gradient, one increasing, one decreasing and others showing no response. Glomeraceae was the most abundant AMF family along the grazing gradient, which fits well with the theory of disturbance tolerance of this group. In addition, sheep grazing preference for host plants did not explain a considerable variation in AMF α-diversity. However, the two grass species exhibited different community composition in their roots and rhizosphere soils. Roots exhibited a lower α-diversity and higher β-diversity within the AMF community than soils. Overall, our results suggest that long-term grazing intensity might have changed the abundance of functionally-diverse AMF taxa in favor of those with disturbance-tolerant traits. We suggest our results would be useful in informing the choice of mycorrhizal fungi indicator variables when assessing the impacts of grassland management choices on grassland ecosystem functioning.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.


2019 ◽  
Vol 28 (14) ◽  
pp. 3445-3458 ◽  
Author(s):  
Irena Maček ◽  
Dave R. Clark ◽  
Nataša Šibanc ◽  
Gerald Moser ◽  
Dominik Vodnik ◽  
...  

2010 ◽  
Vol 67 (6) ◽  
pp. 692-701 ◽  
Author(s):  
Edmilson José Ambrosano ◽  
Rozario Azcón ◽  
Heitor Cantarella ◽  
Gláucia Maria Bovi Ambrosano ◽  
Eliana Aparecida Schammass ◽  
...  

A cana-de-açúcar (Saccharum spp.) vem sendo cultivada no Brasil para produção de açúcar e agroenergia. Em seu sistema de produção, após um ciclo de 4 a 8 anos, é possível a rotação com plantas de cobertura, antes do seu replantio, para melhoria do solo e geração de renda. Estudou-se a caracterização e produtividade de biomassa de leguminosas (como adubos-verdes) e girassol (Helianthus annuus L.), a ocorrência natural de micorrizas, o teor de açúcar e a produtividade em colmos da cana-de-açúcar IAC 87-3396 e a viabilidade econômica desse sistema com cultivo após as opções de rotação, com quantificação da produtividade durante três cortes consecutivos. O amendoim (Arachis hypogaea L.) cv. IAC-Caiapó, girassol cv. IAC-Uruguai e mucuna-preta (Mucuna aterrimum Piper and Tracy) foram as culturas que apresentaram maior percentagem de colonização por fungos micorrízicos. O girassol foi a planta de cobertura que mais extraiu nutrientes do solo, seguido por amendoim (Arachis hipogaea L.) cv. IAC-Tatu e feijão-mungo (Vigna radiata L. Wilczek). A colonização por fungos micorrízicos mostrou correlação positiva com a altura de plantas de cana no primeiro corte (p = 0,01 e R = 0,52), mas não se correlacionou com a produtividade de colmos ou açúcar. No primeiro corte, o girassol foi a cultura de rotação que ocasionou o maior aumento de produtividade, da ordem de 46% em colmos e de 50% na quantidade de açúcar, em comparação com a testemunha. Com exceção dos amendoins, todas as culturas em rotação aumentaram a renda líquida do sistema na média de três cortes de cana-de-açúcar.


2019 ◽  
Vol 32 (2) ◽  
pp. 345-353
Author(s):  
JOHNY DE JESUS MENDONÇA ◽  
LARISSA DE SOUZA GOIS ◽  
JACILENE FRANCISCA SOUZA SANTOS ◽  
TAMIRIS APARECIDA DE CARVALHO SANTOS ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
...  

ABSTRACT Paspalum millegrana grass is a member of the family Poaceae native to the Americas, whose interaction with native symbiotic fungi has not yet been reported. The objective of this study was to evaluate the interactions between the native microorganisms and arbuscular mycorrhizal fungi in the development of P. millegrana Schrad. The experimental design was completely randomized with seven treatments (control, without AMF; native microbial inoculant; native + UFLA05 Gigaspora albida; native + UFLA351 Rhizoglomus clarum; native + UFLA372 Claroideoglomus etunicatum; native + UFLA401 Acaulospora morrowiae, and a mix of all treatments). The substrate was autoclaved sand and coconut powder at 2:1, with eight repetitions. The variables analyzed were: mycorrhizal colonization, dark septate endophytic fungi colonization, number of mycorrhizal spores, dry shoot mass, dry root mass, root length and volume, number of tiller and mycorrhizal dependence. Mycorrhizal arbuscular fungi and dark septate endophytic fungi colonized P. millegrana. The sporulation of arbuscular mycorrhizal fungi associated with P. millegrana was influenced by mycorrhizal colonization, depending on the fungus-plant interaction. P. millegrana was responsive to native + UFLA05 and native + UFLA351. No correlation between tiller emergence and mycorrhizal colonization of P. millegrana was observed.


2004 ◽  
Vol 4 (2) ◽  
pp. 1-15 ◽  
Author(s):  
Marcos P.M. Aidar ◽  
Rosilaine Carrenho ◽  
Carlos A. Joly

Mycorrhizal colonization was assessed in roots of trees within an Atlantic Forest chronosequence, located in the southeastern of São Paulo State, Brazil, inside Tourist State Park of the High Ribeira Valley (PETAR). The phytosociological survey was carried out in three adjacent areas, all on calcareous soil, which correspond to different time intervals during which they have been left abandoned following a slash-and-burn agricultural perturbation. Early Phase (EP) with 15 years; Mid Phase (MP) with 25 years; and Late Phase (LP) with more than 36 years without clear-cut. The inventory indicated a continuum of tree species substitution, which is dominated by species of Leguminosae, especially Piptadenia gonoacantha (Mart.) J.F. Macbr. (Mimosoideae) in the earlier successional phases. Mycorrhizal colonization, estimated by the occurrence of the mycorrhizal structures in the tree species roots, diminished during the season with less rain (winter), and showed no significant differences between successional phases in the wet season (summer). Rather, the mycorrhizal colonization was correlated with occurrence of the tree’s successional status: being positively correlated with occurrence of pioneer species, and negatively correlated with late secondary species. Mycorrhizal colonization was also correlated negatively with soil organic matter and base saturation. Twenty five species of arbuscular mycorrhizal fungi belonging to four genera were identified. Six species were only identified to generic level. The species Glomus etunicatum Becker & Gerd. represented 10% of the total number of spores and occurred in all phases and seasons, while the genus Glomus represented 57% of the total of spores found in the rhizosphere. The diversity indices evaluated for the mycohrriza community were: H’ = 2.3, J’ = 0.97 and R = 4.12. These results are a contribution to the knowledge of The Atlantic Forest biodiversity and may have implications to support programs regarding rehabilitation of degraded vegetation in one of the World’s most threatened Biomes.


Symbiosis ◽  
2021 ◽  
Author(s):  
Lucas Sombra Barbosa ◽  
Tancredo Augusto Feitosa de Souza ◽  
Edjane de Oliveira Lucena ◽  
Lucas Jónatan Rodrigues da Silva ◽  
Lídia Klestadt Laurindo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document