Effect of organic carbon (peat) on moisture retention of peat:mineral mixes

2001 ◽  
Vol 81 (2) ◽  
pp. 205-211 ◽  
Author(s):  
T D Moskal ◽  
L. Leskiw ◽  
M A Naeth ◽  
D S Chanasyk

Quantification of the effects of organic carbon (OC) addition to reclaimed soils is an important reclamation issue. Such effects on soil texture, field capacity (FC), wilting point (PWP) and water-holding capacity (WHC), all expressed both on a gravimetric and volumetric basis, were quantified using both in situ soil samples and laboratory-prepared peat:mineral mixes. Soil samples were collected from both natural and reclaimed areas within the Oil Sands region of Alberta; peat was obtained from the same area. Organic carbon was determined for laboratory-created mixtures and expressed as volume ratios; for the in situ samples it was expressed as % OC. Bulk density, an important factor in the effects of OC on water retention, was measured in situ.Water retention parameters of in situ samples on a gravimetric basis were significantly related to % OC, but those on a volume basis were not. Trends in volumetric WHC for in situ, coarse-textured samples were similar to those for gravimeteric WHC, due to similar bulk densities ranging from 1.30 to 1.40 Mg m–3. However, for in situ peaty soils, trends in volumetric water retention did not mimic those expressed on a gravimetric basis due to low and irregular bulk densities. For laboratory-constructed peat:mineral mixes, FC and WHC were significantly impacted by % OC, however, PWP was not.  The addition of peat material resulted in minor textural changes for sand and loamy sand; hence, the change in texture could not be responsible for the increases in WHC as the result of peat additions. The results for sandy loam were variable. Key words: Bulk density, field capacity, reclamation, water-holding capacity

2008 ◽  
Vol 88 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Hassan Al Majou ◽  
Ary Bruand ◽  
Odile Duval

Most pedotransfer functions (PTF) developed over the past three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite the high number of PTFs published, most being class- or continuous-PTFs, the accuracy of prediction remains limited. In this study, we compared the performance of different class- and continuous-PTFs developed with a regional database. Results showed that the use of in situ volumetric water content at field capacity as a predictor led to much better estimation of water retention properties compared with using predictors derived from the texture, or the organic carbon content and bulk density. This was true regardless of the complexity of the PTFs developed. Results also showed that the best prediction quality was achieved by using the in situ volumetric water content at field capacity after stratification by texture. Comparison of in situ volumetric water content at field capacity, with the water retained at different matric potentials as measured in the laboratory, showed field capacity to approximate 100 hPa, whatever the soil texture. Finally, the lack accuracy of PTFs that do not use the in situ volumetric water content at field capacity as predictor did not appear due to the test soils being unrepresentative of the soils used to develop the PTFs, but were instead related to poor correlations between the predictors used and the water retention properties. Key words: Pedotransfer functions, root mean square error, mean error of prediction, standard deviation of prediction, texture, bulk density, organic carbon content


Geoderma ◽  
2019 ◽  
Vol 347 ◽  
pp. 194-202 ◽  
Author(s):  
Frank G.A. Verheijen ◽  
Anna Zhuravel ◽  
Flávio C. Silva ◽  
António Amaro ◽  
Meni Ben-Hur ◽  
...  

2019 ◽  
pp. 115-129
Author(s):  
Jorge Cabelin ◽  
Beatriz Jadina

Landslides have become very frequent in Leyte which justifies the need for soil assessment and characterization of the landslide-prone areas in the province. This study assessed the physical characteristics of soils from the landslide areas in Cadac-an watershed in Leyte, Philippines. Landslide cuts located in the central highlands of Cadac-an watershed were used as representative profiles in this study. These were examined, characterized and sampled for the analyses of soil physical properties which include particle size distribution (Pipette method), bulk density (Paraffin-clod method), particle density (Pycnometer method), porosity, total soil wet density, water holding capacity and field capacity (Gravimetric method), saturated hydraulic conductivity (Constant head method), liquid limit and plastic index. Generally, soils from the landslide areas in Cadac-an watershed had a sandy loam to clay loam to clayey texture, low bulk density, low particle density, high porosity, moderate total soil wet density, moderate to high water holding capacity, low to moderate field capacity, moderately high to high saturated hydraulic conductivity, moderate liquid limit and low plastic index. Based on the above characteristics, the soils are susceptible to landslide occurrence thus it is highly recommended to conduct constant assessment and monitoring the area.


Author(s):  
Rahul Kamble

Forest is an important ecosystem service to human beings. In recent decades the forest is facing tremendous pressure from anthropogenic activities. One of the activities is the burning of forest floor for easy collection of non-timber forest produce. As a result of this number of incidences of forest fires has increased in the tribal-dominated area of the world. These forest fires have adverse impacts on soil properties which will ultimately in the long term have impacts on the forest ecosystem. Taking into consideration this fact this study was attempted to assess the impacts of controlled forest fires on the physicochemical properties of forest soil in the Gadchiroli forest circle of Central India. To assess the impacts six sampling sites from the forest where identified from the study area where no previous forest fire history was recorded in that season. Initial soil sampling before controlled forest fire was carried out in summer 2019 by quartering method in the topsoil layer (1-5 cm). A controlled forest fire was carried out in the same area. The soil was prepared for soil analysis and analysed by adopting standard methods for bulk density, water holding capacity, pH, electrical conductivity, organic carbon, and organic matter. Results revealed that forest fires increase the bulk density of soil, at 50% (n = 3) sampling locations water holding capacity got reduced down; whereas, at other half increased in capacity was observed. In the case of soil pH 66% (n = 4) sample reported increased in soil pH and at other reduction in soil pH was recorded. Except at one sampling location electrical conductivity was reduced. A similar trend was also noticed for organic carbon and organic matter. Bulk density and water holding capacity will have long term impacts; whereas, pH, electrical conductivity, organic carbon and organic matter will have short term impacts. Furthermore, in those sampling locations where forest fire does not occur in the last 2-3 years organic carbon and organic matter content of the soil is high. Thus, measures to be taken to reduce forest fires activities by incorporating an effective forest fire management system at a place by incorporating fire load management subsystem and fire suppression subsystem.  


Soil Systems ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 27 ◽  
Author(s):  
Jon Marshall ◽  
Richard Muhlack ◽  
Benjamin J. Morton ◽  
Lewis Dunnigan ◽  
David Chittleborough ◽  
...  

Grapevine cane and stalks were considered for pyrolysis at 400 to 700 °C to produce biochar for increasing the water holding capacity of vineyard soil. Feedstocks were pyrolysed using a continuous feed reactor and the resulting biochars characterized in terms of physico-chemical properties, including water retention performance. Hydrophobicity was found in biochar from both feedstocks pyrolysed at 400 °C, but not at higher temperatures. At low soil matric potential, the pyrolysis temperature was the defining variable in determining water retention whereas at higher pressures, the feedstock was the more important variable. Available water content (AWC) of biochar increased with increasing pyrolysis temperatures, with optimal results obtained from grapevine cane at a pyrolysis temperature of 700 °C, which had an AWC 23% higher than a typical clay type soil. Principal component analysis showed variability in water retention of these biochars to be closely associated with the zeta potential, as well as the carbon and ionic content, suggesting that surface charge and hydrophobicity are key properties determining water holding capacity. Pure biochars were superior in water retention performance to typical sandy soils, and so biochar amendment of these soil types may improve water holding (particularly at field capacity). Further study with pot or field trials is recommended to confirm water retention behaviour and assess the feasibility of application under different viticultural scenarios.


2012 ◽  
Vol 4 (2) ◽  
pp. 121-125
Author(s):  
SA Mamun ◽  
F Rahman ◽  
F Yeasmin ◽  
MA Islam

Use of imbalanced chemical fertilizer and changing crop and cropping pattern are becoming a serious threat for the sound environment of the soil. The study provided an assessment of the present status of soil quality of Tangail Sadar based on the laboratory analysis of physical parameters such as bulk density, water holding capacity, sand, silt and clay percentage from July, 2010 to December, 2010. 40 soil samples from 20 different places were collected from 0-15 cm and 15-30 cm depth of the soil from 5 locations mentioned as Porabari, Santosh, Gharinda, By-pass and Ashekpur. The study conducted revealed that among the 40 soil samples, 30 soil's textural classes are sandy clay loam, 7 are sandy clay and rests 3 are clay loam and the pH value ranges from 5.3 to 6.4. The comparative analysis shows that the average texture class is sandy clay loam, which is not relevant to the standard level because the standard texture class is loamy. The average moisture percentage, bulk density and water holding capacity are found 2.865 %, 0.0926 gm/cm3 and 9.44% respectively which are almost similar to standard values and almost soil are suitable for plant growth.DOI: http://dx.doi.org/10.3329/jesnr.v4i2.10160  J. Environ. Sci. & Natural Resources, 4(2): 121-125, 2011  


Author(s):  
Rahul Kamble

Forest is an important ecosystem service to human beings. In recent decades the forest is facing tremendous pressure from anthropogenic activities. One of the activities is the burning of forest floor for easy collection of non-timber forest produce. As a result of this number of incidences of forest fires has increased in the tribal-dominated area of the world. These forest fires have adverse impacts on soil properties which will ultimately in the long term have impacts on the forest ecosystem. Taking into consideration this fact this study was attempted to assess the impacts of controlled forest fires on the physicochemical properties of forest soil in the Gadchiroli forest circle of Central India. To assess the impacts six sampling sites from the forest where identified from the study area where no previous forest fire history was recorded in that season. Initial soil sampling before controlled forest fire was carried out in summer 2019 by quartering method in the topsoil layer (1-5 cm). A controlled forest fire was carried out in the same area. The soil was prepared for soil analysis and analysed by adopting standard methods for bulk density, water holding capacity, pH, electrical conductivity, organic carbon, and organic matter. Results revealed that forest fires increase the bulk density of soil, at 50% (n = 3) sampling locations water holding capacity got reduced down; whereas, at other half increased in capacity was observed. In the case of soil pH 66% (n = 4) sample reported increased in soil pH and at other reduction in soil pH was recorded. Except at one sampling location electrical conductivity was reduced. A similar trend was also noticed for organic carbon and organic matter. Bulk density and water holding capacity will have long term impacts; whereas, pH, electrical conductivity, organic carbon and organic matter will have short term impacts. Furthermore, in those sampling locations where forest fire does not occur in the last 2-3 years organic carbon and organic matter content of the soil is high. Thus, measures to be taken to reduce forest fires activities by incorporating an effective forest fire management system at a place by incorporating fire load management subsystem and fire suppression subsystem.  


2021 ◽  
Vol 13 (13) ◽  
pp. 6997
Author(s):  
Dembe Maselesele ◽  
John B.O. Ogola ◽  
Romeo N. Murovhi

Poor soil fertility caused mainly by low and declining soil organic carbon is one of the major constraints limiting crop productivity in tropical and subtropical regions of South Africa. We evaluated the effect of macadamia husk compost (MHC) on selected chemical and physical properties of a sandy loam soil in NE South Africa in two successive seasons. The treatments, laid out in randomised, complete block design and replicated four times, were: (i) zero control, (ii) inorganic fertilizer (100:60:60 NPK Kg ha−1), (iii) MHC at 15 t ha−1, and (iv) MHC at 30 t ha−1. Soil bulk density; water holding capacity; soil pH; electrical conductivity (EC); organic carbon; total N; and available P, K, Ca, Mg, Al, Zn, and Cu were determined at 0–15 cm soil depth. Macadamia husk compost application decreased bulk density and increased water holding capacity. MHC and inorganic fertilizer increased soil pH, organic carbon, total N, C:N ratio, available P, exchangeable cations, and micronutrients but the effect was more pronounced under MHC treatments in both seasons. The positive effect of MHC on soil physicochemical properties was associated with an increase in soil organic carbon due to MHC application; hence, MHC may offer a sustainable option of increasing soil productivity, particularly in areas characterised by low SOC.


1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.


Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


Sign in / Sign up

Export Citation Format

Share Document