Yields of Sub-humid Rainfed Crops in Relation to Soil Water Retention and Cropping Sequence

1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.

Geoderma ◽  
2019 ◽  
Vol 347 ◽  
pp. 194-202 ◽  
Author(s):  
Frank G.A. Verheijen ◽  
Anna Zhuravel ◽  
Flávio C. Silva ◽  
António Amaro ◽  
Meni Ben-Hur ◽  
...  

2020 ◽  
Vol 24 (12) ◽  
pp. 1042-1050
Author(s):  
Abdulaziz G. Alghamdi ◽  
Arafat Alkhasha ◽  
Hesham M. Ibrahim

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 939-952 ◽  
Author(s):  
M. T. de Melo Carvalho ◽  
A. de Holanda Nunes Maia ◽  
B. E. Madari ◽  
L. Bastiaans ◽  
P. A. J. van Oort ◽  
...  

Abstract. The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha−1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g−1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5–10 and 15–20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha−1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha−1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.


2016 ◽  
Vol 5 (2) ◽  
pp. 57
Author(s):  
Asinyetogha H. Igon ◽  
Josiah M. Ayotamuno

<p>In this paper the compaction level of a sandy-loam soil in a humid tropical climate, most suited for maize cultivation for high productivity was investigated. This involved studying the yield of maize under varying compaction conditions of the soil. Five experimental plots of land at the teaching and research farm of the Rivers State University of Science and Technology, Port Harcourt, Nigeria were used for the exercise. Four of the plots were tilled, while one was left in its original state. Three of the four tilled plots were compacted by wheel traffic; and the compaction values of all the five plots, measured by their bulk densities are 1.17g/cm<sup>3</sup>, 1.20g/cm<sup>3</sup>, 1.23g/cm<sup>3</sup>, 1.28g/cm<sup>3</sup>, and 1.35g/cm<sup>3</sup>. The plot that was left in its original untilled and un-compacted state was used as the control plot. Irrigation of the field, weed and pest controls were done uniformly for all the plots. The maize plant was cultivated between October and February and its growth and yield estimated in terms of plant height, leaf area, number of plants to reach maturity, and quantum of dry matter and grain obtained. Results of early shoot emergence showed that plots with lower bulk densities had higher percentage emergence than the ones with higher bulk densities. Furthermore, it was found that the maize yield was significantly affected by the soil bulk density at P&lt;0.05. A compaction value of 1.31g/cm<sup>3</sup> is determined as optimal for maize cultivation in a sandy-loam soil in a humid tropical environment.</p>


Sign in / Sign up

Export Citation Format

Share Document