scholarly journals Efficacy of Late-Season Herbicide Programs for Controlling Palmer Amaranth in Postharvest Wheat Stubble

Author(s):  
R. Liu ◽  
V. Kumar ◽  
N. Aquilina ◽  
T. Lambert
2017 ◽  
Vol 31 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Jonathon R. Kohrt ◽  
Christy L. Sprague

Three field experiments were conducted from 2013 to 2015 in Barry County, MI to evaluate the effectiveness of PRE, POST, and one- (EPOS) and two-pass (PRE followed by POST) herbicide programs for management of multiple-resistant Palmer amaranth in field corn. The Palmer amaranth population at this location has demonstrated resistance to glyphosate (Group 9), ALS-inhibiting herbicides (Group 2), and atrazine (Group 5). In the PRE only experiment, the only herbicide treatments that consistently provided ~80% or greater control were pyroxasulfone and the combination of mesotrione +S-metolachlor. However, none of these treatments provided season-long Palmer amaranth control. Only topramezone provided >85% Palmer amaranth control 14 DAT, in the POST only experiment. Of the 19 herbicide programs studied all but three programs provided ≥88% Palmer amaranth control at corn harvest. Herbicide programs that did not control Palmer amaranth relied on only one effective herbicide site of action and in one case did not include a residual herbicide POST for late-season Palmer amaranth control. Some of the EPOS treatments were effective for season-long Palmer amaranth control; however, application timing and the inclusion of a residual herbicide component will be critical for controlling Palmer amaranth. The programs that consistently provided the highest levels of season-long Palmer amaranth control were PRE followed by POST herbicide programs that relied on a minimum of two effective herbicide sites of action and usually included a residual herbicide for late-season control.


2016 ◽  
Vol 30 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Holden D. Bell ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

A field experiment was conducted at Marianna, AR in 2012 and 2013 to test various combinations of (1) soybean production systems: full-season tillage (rye plus deep tillage using a moldboard plow), full season (no rye plus no tillage), late-season tillage (wheat plus deep tillage), and late season (no wheat plus no tillage); (2) soybean cultivars: glufosinate or glyphosate resistant; and (3) four herbicide programs for management of glyphosate-resistant Palmer amaranth. At soybean harvest, Palmer amaranth control was 95 to 100% when flumioxazin plus pyroxasulfone was applied PRE. In both years full-season tillage and late-season tillage systems in combination with flumioxazin plus pyroxasulfone applied PRE increased Palmer amaranth control over the same systems in the absence of flumioxazin plus pyroxasulfone applied PRE. The addition of deep tillage in the form of a moldboard plow to the full-season and late-season systems reduced Palmer amaranth densities at harvest. Similarly, Palmer amaranth seed production was often lower in the full-season tillage and late-season tillage systems compared with the full-season and late-season no-tillage systems, regardless of soybean cultivar and herbicide programs. Overall, the use of deep tillage in the full-season or late-season systems in combination with a PRE application of flumioxazin plus pyroxasulfone provided greater control of Palmer amaranth, decreasing both density and seed production and increasing soybean grain yields.


2011 ◽  
Vol 25 (4) ◽  
pp. 526-534 ◽  
Author(s):  
Dilpreet S. Riar ◽  
Jason K. Norsworthy ◽  
Griff M. Griffith

Research was conducted at experimental research stations near Keiser and Marianna (Marianna-A), AR, in 2007, and in a grower's field near Marianna (Marianna-B), AR, in 2008, to compare herbicide programs, including POST application(s) of glyphosate/glufosinate alone or in combination with residual herbicides applied as PRE, mid-POST (MPOST), or layby POST-directed (PD) in enhanced glyphosate- and glufosinate-resistant cotton. Weed species evaluated included Palmer amaranth, pitted morningglory, hemp sesbania, barnyardgrass, and a mixture of large crabgrass and goosegrass. At Marianna-B, AR, the Palmer amaranth population was a mixture of glyphosate-resistant and -susceptible plants. For both cotton cultivars and at all locations, inclusion ofS-metolachlor plus fluometuron PRE increased weed control and/or decreased the number of glufosinate or glyphosate applications needed in-season. At Marianna-B, AR, PRE residual herbicides and/or glufosinate were required to control glyphosate-resistant Palmer amaranth. Addition of pyrithiobac to glufosinate or glyphosate did not increase weed control. A layby PD application of flumioxazin plus MSMA was required to increase late-season control of all weed species in POST glufosinate-only programs, but not in POST glyphosate-only programs. None of the programs caused > 5% injury to either cotton cultivar. Seed-cotton yield was similar in all herbicide programs at Keiser, AR, and Marianna-A, AR, except for the POST glyphosate-only program, which yielded less than the PRE followed by POST programs in glyphosate-resistant cotton at Keiser, AR. In general, PRE herbicides did not increase cotton yield but did improve early and late-season control of glyphosate-susceptible and -resistant weeds in both cotton cultivars.


2021 ◽  
pp. 1-17
Author(s):  
Vipan Kumar ◽  
Rui Liu ◽  
Amit J. Jhala ◽  
Prashant Jha ◽  
Misha Manuchehri

Abstract Late-season control of Palmer amaranth in postharvest wheat stubble is important for reducing the seedbank. Our objectives were to evaluate the efficacy of late-season POST herbicides for Palmer amaranth control, shoot dry biomass and seed production in postharvest wheat stubble. Field experiments were conducted at Kansas State University Agricultural Research Center near Hays, KS during 2019 and 2020 growing seasons. The study site had a natural seedbank of Palmer amaranth. Herbicide treatments were applied 3 wk after wheat harvest when Palmer amaranth plants had reached inflorescence initiation stage. Palmer amaranth was controlled 96 to 98% 8 weeks after treatment and shoot biomass as well as seed production was prevented when paraquat was applied alone or when mixed with atrazine, metribuzin, flumioxazin, 2,4-D, sulfentrazone, pyroxasulfone + sulfentrazone, or flumioxazin + metribuzin, and with glyphosate + dicamba, glyphosate + 2,4-D, saflufenacil + 2,4-D, glufosinate + dicamba + glyphosate, and glufosinate + 2,4-D + glyphosate. Palmer amaranth was controlled 89 to 93% with application of glyphosate, glufosinate, dicamba + 2,4-D, saflufenacil + atrazine, and saflufenacil + metribuzin resulting in Palmer amaranth shoot biomass of 15 to 56 g m -2 and production of 1,080 to 7,040 seeds m−2. Palmer amaranth control was less than 86% with application of dicamba, 2,4-D, dicamba + atrazine, and saflufenacil resulting in Palmer amaranth shoot biomass of 38 to 47 g m−2 and production of 3,110 to 6,190 seeds m−2. Palmer amaranth was controlled 63 and 72%, shoot biomass was 178 and 161 g m−2 and seed production was 35,180 and 39,510 seeds m−2, respectively, with application of 2,4-D + bromoxynil + fluroxypyr, and bromoxynil + pyrasulfotole + atrazine. Growers should utilize these effective POST herbicide mixes for Palmer amaranth control to prevent seed prevention postharvest in wheat stubble.


2018 ◽  
Vol 33 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Debalin Sarangi ◽  
Amit J. Jhala

AbstractDue to depressed corn and soybean prices over the last few years in the United States, growers in Nebraska are showing interest in no-tillage (hereafter referred to as no-till) conventional (non–genetically engineered [non-GE]) soybean production. Due to the increasing number of herbicide-resistant weeds in the United States, weed control in no-till non-GE soybean using POST herbicides is a challenge. The objectives of this study were to compare PRE-only, PRE followed by (fb) POST, and PRE fb POST with residual (POST-WR) herbicide programs for Palmer amaranth and velvetleaf control and soybean injury and yield, as well as to estimate the gross profit margins and benefit–cost ratio of herbicide programs. A field experiment was conducted in 2016 and 2017 at Clay Center, NE. The PRE herbicides tested in this study resulted in ≥95% Palmer amaranth and velvetleaf control at 28 d after PRE (DAPRE). Averaged across the programs, the PRE-only program controlled Palmer amaranth 66%, whereas 86% and 97% control was obtained with the PRE fb POST and PRE fb POST-WR programs, respectively, at 28 d after POST (DAPOST). At 28 DAPOST, the PRE fb POST herbicide programs controlled velvetleaf 94%, whereas the PRE-only program resulted in 85% control. Mixing soil-residual herbicides with foliar-active POST programs did not improve velvetleaf control. Averaged across herbicide programs, PRE fb POST programs increased soybean yield by 10% and 41% in 2016 and 2017, respectively, over the PRE-only programs. Moreover, PRE fb POST-WR programs produced 7% and 40% higher soybean yield in 2016 and 2017, respectively, compared with the PRE fb POST programs. The gross profit margin (US$1,184.3 ha−1) was highest under flumioxazin/pyroxasulfone (PRE) fb fluthiacet-methyl plusS-metolachlor/fomesafen (POST-WR) treatment; however, the benefit–cost ratio was highest (6.1) with the PRE-only program of flumioxazin/chlorimuron-ethyl.


2020 ◽  
Vol 34 (5) ◽  
pp. 770-775
Author(s):  
Fidel González-Torralva ◽  
Jason K. Norsworthy ◽  
Leonard B. Piveta ◽  
Vijay K. Varanasi ◽  
Tom Barber ◽  
...  

AbstractPalmer amaranth is one of the most difficult-to-control weeds in row crop systems and has evolved resistance to several herbicide sites of action (SOAs). A late-season weed-escape survey had been conducted earlier to determine the distribution of protoporphyrinogen oxidase–inhibitor resistant Palmer Amaranth in Arkansas. The objective of this study was to evaluate the susceptibility of Arkansas Palmer amaranth accessions to commonly used herbicide SOAs. The SOAs evaluated were group 2 + 9, 3, 4, 5, 10, 14, 15, and 27, and the representative herbicide from each group was imazethapyr + glyphosate (79 + 860 g ha−1), trifluralin (1,120 g ha−1), dicamba (280 and 560 g ha−1), atrazine (560 g ha−1), glufosinate (594 g ha−1), fomesafen (395 g ha−1), S-metolachlor (1,064 g ha−1), and tembotrione (92 g ha−1), respectively. Palmer amaranth mortality varied among accessions across SOAs. Averaged across accessions, the mortality rates, by treatment in order from lowest to highest, were as follows: glyphosate + imazethapyr (16%), tembotrione (51%), dicamba at 280 g ha−1 (51%), fomesafen (76%), dicamba at 560 g ha−1 (82%), atrazine (85%), trifluralin (87%), S-metolachlor (96%), and glufosinate (99.5%). This study provides evidence that Palmer amaranth accessions with low susceptibility to glyphosate + imazethapyr, fomesafen, and tembotrione are widespread throughout Arkansas. Of the remaining SOAs, most Palmer amaranth accessions were sensitive; however, within each herbicide SOA, except glufosinate, control of some accessions was less than expected and resistance is suspected.


2020 ◽  
pp. 1-8
Author(s):  
Chandrima Shyam ◽  
Parminder S. Chahal ◽  
Amit J. Jhala ◽  
Mithila Jugulam

Abstract Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in soybean production fields in Nebraska and many other states in the United States. Soybean resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3TM) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower’s field infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean. Sulfentrazone + cloransulam-methyl, imazethapyr + saflufenacil + pyroxasulfone, and chlorimuron ethyl + flumioxazin + metribuzin applied PRE provided 84% to 97% control of GR Palmer amaranth compared with the nontreated control 14 d after PRE. Averaged across herbicide programs, PRE fb 2,4-D and/or glufosinate, and sequential application of 2,4-D or glufosinate applied EPOST fb LPOST resulted in 92% and 88% control of GR Palmer amaranth, respectively, compared with 62% control with PRE-only programs 14 d after LPOST. Reductions in Palmer amaranth biomass followed the same trend; however, Palmer amaranth density was reduced 98% in EPOST fb LPOST programs compared with 91% reduction in PRE fb LPOST and 76% reduction in PRE-only programs. PRE fb LPOST and EPOST fb LPOST programs resulted in an average soybean yield of 4,478 and 4,706 kg ha−1, respectively, compared with 3,043 kg ha−1 in PRE-only programs. Herbicide programs evaluated in this study resulted in no soybean injury. The results of this research illustrate that herbicide programs are available for the management of GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.


2016 ◽  
Vol 30 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic in cotton-producing areas of the midsouthern region of the United States. Growers rely heavily on PRE residual herbicides to control Palmer amaranth since few effective POST options exist. Interest in integrating high-residue cover crops with existing herbicide programs to combat GR weeds has increased. Research was conducted in 2013 and 2014 in Tennessee to evaluate GR Palmer amaranth control when integrating cover crops and PRE residual herbicides. Cereal rye, crimson clover, hairy vetch, winter wheat, and combinations of one grass plus one legume were compared with winter weeds without a cover crop followed by fluometuron or acetochlor applied PRE. Biomass of cover crops was determined prior to termination 3 wk before planting. Combinations of grass and legume cover crops accumulated the most biomass (> 3,500 kg ha−1) but by 28 d after application (DAA) the cereal rye and wheat provided the best Palmer amaranth control. Crimson clover and hairy vetch treatments had the greatest number of Palmer amaranth. These cereal and legume blends reduced Palmer amaranth emergence by half compared to non–cover-treated areas. Fluometuron and acetochlor controlled Palmer amaranth 95 and 89%, respectively, at 14 DAA and 54 and 62%, respectively, at 28 DAA. Cover crops in combination with a PRE herbicide did not adequately control Palmer amaranth.


2016 ◽  
Vol 30 (2) ◽  
pp. 366-376 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

Two separate field experiments were conducted over a 2-yr period in Fayetteville, AR, during 2012 and 2013 to (1) evaluate POST herbicide programs utilizing a premixture of dimethylamine (DMA) salt of glyphosate + choline salt of 2,4-D in a soybean line resistant to 2,4-D, glyphosate, and glufosinate and (2) determine efficacy of herbicide programs that begin with PRE residual herbicides followed by POST applications of 2,4-D choline + glyphosate DMA on glyphosate-resistant Palmer amaranth. In the first experiment, POST applications alone that incorporated the use of residual herbicides with the glyphosate + 2,4-D premixture provided 93 to 99% control of Palmer amaranth at the end of the season. In the second experiment, the use of flumioxazin, flumioxazin + chlorimuron methyl, S-metolachlor + fomesafen, or sulfentrazone + chloransulam applied PRE provided 94 to 98% early-season Palmer amaranth control. Early-season control helped maintain a high level of Palmer amaranth control throughout the growing season, in turn resulting in fewer reproductive Palmer amaranth plants present at soybean harvest compared to most other treatments. Although no differences in soybean yield were observed among treated plots, it was evident that herbicide programs should begin with PRE residual herbicides followed by POST applications of glyphosate + 2,4-D mixed with residual herbicides to minimize late-season escapes and reduce the likelihood of contributions to the soil seedbank. Dependent upon management decisions, the best stewardship of this technology will likely rely on the use multiple effective mechanisms of action incorporated into a fully integrated weed management system.


Sign in / Sign up

Export Citation Format

Share Document