scholarly journals Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR

2015 ◽  
Vol 59 (04) ◽  
pp. 380-388 ◽  
Author(s):  
P. HUO ◽  
W. T. SHEN ◽  
P YAN ◽  
D. C. TUO ◽  
X. Y. LI ◽  
...  
Virology ◽  
2016 ◽  
Vol 489 ◽  
pp. 179-191 ◽  
Author(s):  
Gabriela Chávez-Calvillo ◽  
Carlos A. Contreras-Paredes ◽  
Javier Mora-Macias ◽  
Juan C. Noa-Carrazana ◽  
Angélica A. Serrano-Rubio ◽  
...  

2011 ◽  
Vol 49 (7) ◽  
pp. 2620-2624 ◽  
Author(s):  
Susan Bennett ◽  
Heli Harvala ◽  
Jeroen Witteveldt ◽  
E. Carol McWilliam Leitch ◽  
Nigel McLeish ◽  
...  

2018 ◽  
Vol 62 (1) ◽  
pp. 173-180 ◽  
Author(s):  
M. A. Garcia-Viera ◽  
L. Sanchez-Segura ◽  
G. Chavez-Calvillo ◽  
D. Jarquin-Rosales ◽  
L. Silva-Rosales

2008 ◽  
Vol 98 (7) ◽  
pp. 848-856 ◽  
Author(s):  
H.-J. Bau ◽  
Y.-J. Kung ◽  
J. A. J. Raja ◽  
S.-J. Chan ◽  
K.-C. Chen ◽  
...  

A virus identified as a new pathotype of Papaya leaf distortion mosaic virus (PLDMV, P-TW-WF) was isolated from diseased papaya in an isolated test-field in central Taiwan, where transgenic papaya lines resistant to Papaya ringspot virus (PRSV) were evaluated. The infected plants displayed severe mosaic, distortion and shoe-stringing on leaves; stunting in apex; and water-soaking on petioles and stems. This virus, which did not react in enzyme-linked immunosorbent assay with the antiserum to the PRSV coat protein, infected only papaya, but not the other 18 plant species tested. Virions studied under electron microscope exhibited morphology and dimensions of potyvirus particles. Reverse transcription-polymerase chain reaction conducted using potyvirus-specific primers generated a 1,927-nucleotide product corresponding to the 3′ region of a potyvirus, showing high sequence identity to the CP gene and 3′ noncoding region of PLDMV. Search for similar isolates with the antiserum against CP of P-TW-WF revealed scattered occurrence of PLDMV in Taiwan. Phylogenetic analysis of PLDMV isolates of Taiwan and Japan indicated that the Taiwan isolates belong to a separate genetic cluster. Since all the Taiwan isolates infected only papaya, unlike the cucurbit-infecting Japanese P type isolates, the Taiwan isolates are considered a new pathotype of PLDMV. Susceptibility of all our PRSV-resistant transgenic papaya lines to PLDMV indicates that the virus is an emerging threat for the application of PRSV-resistant transgenic papaya in Taiwan and elsewhere.


2009 ◽  
Vol 99 (11) ◽  
pp. 1312-1320 ◽  
Author(s):  
Yi-Jung Kung ◽  
Huey-Jiunn Bau ◽  
Yi-Ling Wu ◽  
Chiung-Huei Huang ◽  
Tsui-Miao Chen ◽  
...  

During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3′ untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 230
Author(s):  
Pablo Vargas-Mejía ◽  
Julio Vega-Arreguín ◽  
Gabriela Chávez-Calvillo ◽  
Enrique Ibarra-Laclette ◽  
Laura Silva-Rosales

Papaya ringspot virus (PRSV), a common potyvirus infecting papaya plants worldwide, can lead to either antagonism or synergism in mixed infections with Papaya mosaic virus (PapMV), a potexvirus. These two unrelated viruses produce antagonism or synergism depending on their order of infection in the plant. When PRSV is inoculated first or at the same time as PapMV, the viral interaction is synergistic. However, an antagonistic response is observed when PapMV is inoculated before PRSV. In the antagonistic condition, PRSV is deterred from the plant and its drastic effects are overcome. Here, we examine differences in gene expression by high-throughput RNA sequencing, focused on immune system pathways. We present the transcriptomic expression of single and mixed inoculations of PRSV and PapMV leading to synergism and antagonism. Upregulation of dominant and hormone-mediated resistance transcripts suggests that the innate immune system participates in synergism. In antagonism, in addition to innate immunity, upregulation of RNA interference-mediated resistance transcripts suggests that adaptive immunity is involved.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Qian-Qian Yang ◽  
Xing-Xing Zhao ◽  
Dao Wang ◽  
Peng-Jun Zhang ◽  
Xue-Nan Hu ◽  
...  

AbstractBean pod mottle virus (BPMV) is a destructive virus that causes serious economic losses in many countries every year, highlighting the importance of its effective detection. In this study, we developed a fast reverse transcription-cross-priming amplification (RT-CPA) coupled with lateral flow dipstick (LFD) diagnostic method for BPMV detection. The RT-CPA-LFD assay that targets the coat protein gene of BPMV was highly specific against diagnosing four other common viruses transmitted by soybean seeds, i.e., Southern bean mosaic virus (SBMV), Tomato ringspot virus (ToRSV), Arabis mosaic virus (ArMV), and Tobacco ringspot virus (TRSV). The sensitivities of the real-time fluorescent RT-CPA and the RT-CPA-LFD assay were at least 50 pg/μl and 500 pg/μl, respectively. Despite a compromise in the limit of detection of the RT-CPA method compared with TaqMan-MGB real-time RT-PCR, our results demonstrated a notably better performance in the detection of field samples of BPMV-infested soybean seeds. With the advantages of efficiency and convenience by visual determination, the RT-CPA-LFD assay presents a potential application for the rapid and accurate detection of BPMV in routine tests.


Sign in / Sign up

Export Citation Format

Share Document