scholarly journals Green Function and Self-adjoint Laplacians on Polyhedral Surfaces

2019 ◽  
Vol 72 (5) ◽  
pp. 1324-1351
Author(s):  
Alexey Kokotov ◽  
Kelvin Lagota

AbstractUsing Roelcke’s formula for the Green function, we explicitly construct a basis in the kernel of the adjoint Laplacian on a compact polyhedral surface$X$and compute the$S$-matrix of$X$at the zero value of the spectral parameter. We apply these results to study various self-adjoint extensions of a symmetric Laplacian on a compact polyhedral surface of genus two with a single conical point. It turns out that the behaviour of the$S$-matrix at the zero value of the spectral parameter is sensitive to the geometry of the polyhedron.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Anirban Basu

Abstract We consider certain elliptic modular graph functions that arise in the asymptotic expansion around the non-separating node of genus two string invariants that appear in the integrand of the D8ℛ4 interaction in the low momentum expansion of the four graviton amplitude in type II superstring theory. These elliptic modular graphs have links given by the Green function, as well its holomorphic and anti-holomorphic derivatives. Using appropriate auxiliary graphs at various intermediate stages of the analysis, we show that each graph can be expressed solely in terms of graphs with links given only by the Green function and not its derivatives. This results in a reduction in the number of basis elements in the space of elliptic modular graphs.


2006 ◽  
Vol 6 (4) ◽  
pp. 386-404 ◽  
Author(s):  
Ivan. P. Gavrilyuk ◽  
V.L. Makarov ◽  
V.B. Vasylyk

AbstractWe develop an accurate approximation of the normalized hyperbolic operator sine family generated by a strongly positive operator A in a Banach space X which represents the solution operator for the elliptic boundary value problem. The solution of the corresponding inhomogeneous boundary value problem is found through the solution operator and the Green function. Starting with the Dunford — Cauchy representation for the normalized hyperbolic operator sine family and for the Green function, we then discretize the integrals involved by the exponentially convergent Sinc quadratures involving a short sum of resolvents of A. Our algorithm inherits a two-level parallelism with respect to both the computation of resolvents and the treatment of different values of the spatial variable x ∈ [0, 1].


1970 ◽  
Vol 8 (13) ◽  
pp. 1069-1071 ◽  
Author(s):  
F. Flores ◽  
F. Garcia-Moliner ◽  
J. Rubio

1971 ◽  
Vol 5 (2) ◽  
pp. 239-263 ◽  
Author(s):  
Z. Sedláček

Small amplitude electrostatic oscillations in a cold plasma with continuously varying density have been investigated. The problem is the same as that treated by Barston (1964) but instead of his normal-mode analysis we employ the Laplace transform approach to solve the corresponding initial-value problem. We construct the Green function of the differential equation of the problem to show that there are branch-point singularities on the real axis of the complex frequency-plane, which correspond to the singularities of the Barston eigenmodes and which, asymptotically, give rise to non-collective oscillations with position-dependent frequency and damping proportional to negative powers of time. In addition we find an infinity of new singularities (simple poles) of the analytic continuation of the Green function into the lower half of the complex frequency-plane whose position is independent of the spatial co-ordinate so that they represent collective, exponentially damped modes of plasma oscillations. Thus, although there may be no discrete spectrum, in a more general sense a dispersion relation does exist but must be interpreted in the same way as in the case of Landau damping of hot plasma oscillations.


The question of non-uniqueness in boundary integral equation formu­lations of exterior problems for the Helmholtz equation has recently been resolved with the use of additional radiating multipoles in the definition of the Green function. The present note shows how this modification may be included in a rigorous formalism and presents an explicit choice of co­efficients of the added terms that is optimal in the sense of minimizing the least-squares difference between the modified and exact Green functions.


Sign in / Sign up

Export Citation Format

Share Document