scholarly journals Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system

2017 ◽  
Vol 70 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Zoran Kovač ◽  
Zoran Nakić ◽  
Krešimir Pavlić
2018 ◽  
Author(s):  
Melinda L. Erickson ◽  
◽  
Craig J. Brown ◽  
Paul E. Stackelberg ◽  
Bernard T. Nolan

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2184 ◽  
Author(s):  
Shakya ◽  
Nakamura ◽  
Kamei ◽  
Shrestha ◽  
Nishida

: The increasing concentration of nitrogen compounds in the groundwater is of a growing concern in terms of human health and groundwater quality. Although an excess of nitrogen compounds in the groundwater of the Kathmandu Valley has been reported, the seasonal variations of the fate of the nitrogen compounds and their relationships to the subsurface sediments are unknown. In this study, spatially distributed shallow dug well samples were collected during both the dry and wet seasons of 2016, and the nitrogen compound, chloride (Cl−), and iron (Fe2+) concentrations were analyzed. Two shallow dug wells and one deep tube well were monitored monthly for 2 years. Although NH4-N concentrations were similar in the clay-dominated areas during both seasons (1 and 0.9 mg-N/L), they were lower in the gravel-dominated areas during wet season (1.8 > 0.6 mg-N/L). The NO3-N concentration differed depending upon the soil type which increased during the wet season (clay 4.9 < 13.6 mg-N/L and gravel 2.5 < 6.8 mg-N/L). The Fe2+ concentration, however, was low during the wet season (clay 2.7 > 0.4 mg/L and gravel 2.8 > 0.3 mg/L). Long-term analysis showed higher fluctuation of nitrogen compounds in the gravel-bearing areas than in the clay-bearing areas.


Data Series ◽  
10.3133/ds598 ◽  
2011 ◽  
pp. i-64
Author(s):  
Jeannette H. Oden ◽  
Dexter W. Brown ◽  
Timothy D. Oden

2021 ◽  
Author(s):  
Abdoulaye Pouye ◽  
Seynabou Cissé Faye ◽  
Mathias Diedhiou ◽  
Cheikh Becaye Gaye ◽  
Richard G. Taylor

Abstract In rapidly growing cities in the tropics, unregulated urban development presents a major risk to groundwater quality. Here, we assess the vulnerability of an unconfined aquifer of Quaternary sands in the Thiaroye area of Dakar (Senegal) to contamination using four GIS-based indices (DRASTIC, DRASTIC_N, SINTACS, SI). Our correlation of assessed vulnerability to observed impact is semi-quantitative, relating observed groundwater quality, based on nitrate concentrations and tryptophan-like fluorescence to vulnerability degrees (i.e. coincidence rates). We show that considerably more of the Thiaroye area has a “very high vulnerability” according to SI (36%) relative to DRASTIC (5%) and SINTACS (9%); “high vulnerability” is estimated using DRASTIC_N (100%), DRASTIC (66%) and SINTACS (69%). Single-parameter sensitivity tests show that groundwater depth, soil, topography, land use and redox parameters strongly influence assessments of groundwater vulnerability. Correlation with observed nitrate concentrations reveals aquifer vulnerability is better represented by SI (coincidence rates of 56%) relative to DRASTIC_N (43%), SINTACS (38%) and DRASTIC (34%). The underestimation of groundwater vulnerability in Dakar using DRASTIC, DRASTIC_N and SINTACS is attributed to their reliance on an assumed capacity of the unsaturated zone to attenuate surface or near-surface contaminant loading, which in the low-income (Thiaroye) area of Dakar is thin and affords limited protection. The inclusion of a land-use parameter in SI improves the characterization of groundwater vulnerability in this low-income, rapidly urbanizing area of Dakar.


2018 ◽  
Vol 79 (1) ◽  
pp. 71-81
Author(s):  
Vesna Ristic-Vakanjac ◽  
Marina Cokorilo-Ilic ◽  
Petar Papic ◽  
Dusan Polomcic ◽  
Radisav Golubovic

Although an invisible component of the hydrologic cycle, groundwater generally takes precedence over other water resources in the area of drinking water supply. Among groundwater resources, karst aquifers tend to be rich in sufficiently-accessible amounts of high-quality water. During most of the year, this water requires only disinfection prior to delivery to the end user. However, in many cases extreme rainfall and/or sudden snow melt results in transient turbidity, increase in bacterial count and temporary contamination (e.g. increase in nitrate and phosphate concentrations). To be able to determine the effect of the precipitation regime on various groundwater quality parameters, it is necessary to establish continuous monitoring of the parameter of interest and certain parameters should be observed at least once a day, if not more often (continuously). Such monitoring provides sufficiently long time-series of the considered parameter, so that autocorrelation and cross-correlation analyses can be undertaken and AR, CR and ARCR modeling used for simulations and short-term forecasts. Apart from the theoretical background, the paper presents a case study of the occurrence of nitrates at a karst spring called ?Banja? near the city of Valjevo, Serbia. A ten-year (1991-2000) timeseries of the discharged volume of water was used in the study, as well as nitrate concentrations recorded on a daily basis. In addition, daily precipitation was gauged in the immediate vicinity of the catchment and the rainwater chemically analyzed. The analyses included nitrate concentrations in precipitation. The generated timeseries were used for autocorrelation and cross-correlation analyses of nitrate concentrations in the Banja Spring pool during the entire period of monitoring, as well as in one wet and one dry year. The results are presented for all three cases, based on simulations applying AR, CR and ARCR modeling.


Sign in / Sign up

Export Citation Format

Share Document